【HDU - 1069】Monkey and Banana (最长下降子序列 + 贪心,最长上升子序列类问题)
題干:
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.?
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.?
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.?
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.?
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,?
representing the number of different blocks in the following data set. The maximum value for n is 30.?
Each of the next n lines contains three integers representing the values xi, yi and zi.?
Input is terminated by a value of zero (0) for n.?
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".?
Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342題目大意:
把給定的長方體(不限)疊加在一起,疊加的條件是,上面一個長方體的長和寬都比下面長方體的長
?
和寬短;求這些長方體能疊加的最高的高度.(其中(3,2,1)可以擺放成(3,1,2)、(2,1,3)等).
PS:
每塊積木最多有 3 個不同的底面和高度,我們可以把每塊積木看成三個不同的積木,
那么n種類型的積木就轉化為3 * n個不同的積木,對這3 * n個積木的長按照從大到小排序;
然后找到一個遞減的子序列,使得子序列的高度和最大。
解題報告:
? ? ?不懂為什么要按照長度排序。
AC代碼:
#include<bits/stdc++.h>using namespace std;struct Node {int sm,bg,h;//小,大Node(){}Node(int sm,int bg,int h):sm(sm),bg(bg),h(h){}} node[300000 + 5]; int dp[300000 + 5]; int top; int n;//bool cmp(Node a,Node b) { // if(a.bg > b.bg) return a.sm > b.sm; // else if(a.bg == b.bg) return a.sm > b.sm; // return 0;//即 b一定排在a前面了 //} bool cmp(Node a,Node b) {if(a.bg == b.bg) return a.sm > b.sm;else return a.bg > b.bg; } int main() {int l,w,h;//長寬高 int iCase = 0;while(scanf("%d",&n)) {if(n == 0 ) break;top = 0;memset(dp,0,sizeof(dp));for(int i = 1; i<=n; i++) {scanf("%d%d%d",&l,&w,&h);if(l>w) node[++top] =Node(w,l,h);else node[++top] =Node(l,w,h);if(l<h) node[++top] = Node(l,h,w);else node[++top] = Node(h,l,w);if(w<h) node[++top] = Node(w,h,l);else node[++top] = Node(h,w,l);}sort(node+1,node+top+1,cmp); // for(int i = 1; i<=top; i++) { // printf("%d %d %d\n",node[i].sm,node[i].bg,node[i].h); // } // printf("\n");for(int i = 1; i<=top; i++) dp[i] = node[i].h;for(int i = 1; i<=top; i++) {for(int j = 1; j<=i; j++) {if(node[i].bg < node[j].bg && node[i].sm < node[j].sm) {dp[i] = max(dp[i],dp[j] + node[i].h);}}}printf("Case %d: maximum height = %d\n",++iCase,*max_element(dp+1,dp+top+1));}return 0 ; }?
總結
以上是生活随笔為你收集整理的【HDU - 1069】Monkey and Banana (最长下降子序列 + 贪心,最长上升子序列类问题)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【蓝桥杯 - 试题】立方尾不变(tri
- 下一篇: wfxswtch.exe - wfxsw