不定积分公式和推导
不定積分公式
一、記憶部分
二、三角函數代換求二次積分
∫dxa2?x2x=asin?t ̄ ̄∫dasin?ta2?a2sin?2t=∫1dt=t+Ct=arcsin?xa ̄ ̄arcsin?x+C\int \frac{dx}{\sqrt{a^2-x^2}}\,\underline{\underline{x =a\sin t}}\,\int\frac{d\,a\sin t}{\sqrt{a^2-a^2\sin^2t}} = \int 1\,dt = t+C \,\,\,\,\underline{\underline{t = \arcsin \frac{x}{a}}}\,\,\,\,\arcsin x+C ∫a2?x2?dx?x=asint??∫a2?a2sin2t?dasint?=∫1dt=t+Ct=arcsinax???arcsinx+C
∫dxa2+x2x=atan?t ̄ ̄∫datan?ta2+a2tan?2t=∫asec?2tdta2sec?2t=ta+Ct=arctan?xa ̄ ̄1aarctan?xa+C\int\frac{dx}{a^2+x^2}\,\underline{\underline{x =a\tan t}}\,\int\frac{d\,a\tan t}{a^2+a^2\tan^2t} = \int\frac{a\sec^2tdt}{a^2\sec^2t} = \frac {t}{a}+C \,\,\,\,\underline{\underline{t = \arctan \frac{x}{a}}}\,\,\,\, \frac{1}{a}\arctan \frac{x}{a}+C ∫a2+x2dx?x=atant??∫a2+a2tan2tdatant?=∫a2sec2tasec2tdt?=at?+Ct=arctanax???a1?arctanax?+C
∫dxx2?a2=∫dx(x?a)(x+a)=12a∫(1x?a?1x+a)da=12a[ln?∣x?a∣?ln∣x+a∣]+C=12aln?∣x?ax+a∣+C\int \frac{dx}{x^2-a^2} = \int \frac{dx}{(x-a)(x+a)} = \frac{1}{2a}\int (\frac{1}{x-a}-\frac{1}{x+a})da = \frac{1}{2a}[\ln|x-a|-ln|x+a|]+C = \frac{1}{2a}\ln|\frac{x-a}{x+a}|+C ∫x2?a2dx?=∫(x?a)(x+a)dx?=2a1?∫(x?a1??x+a1?)da=2a1?[ln∣x?a∣?ln∣x+a∣]+C=2a1?ln∣x+ax?a?∣+C
∫dxx2?a2x=asec?t ̄ ̄∫dasec?ta2sec?2t?a2=∫asec?ttan?tdtatan?t=∫sec?tdt=ln?∣1+sin?tcos?t∣+C∵x=asec?t(畫三角形)∴sec?t=xa,tan?t=x2?a2a∴ln?∣1+sin?tcos?t∣+C=ln?∣sec?t+tan?t∣+C=ln?∣x+x2?a2∣?ln?∣a∣+C=ln?(x+x2?a2)+C\int \frac{dx}{\sqrt{x^2-a^2}} \,\,\,\,\underline{\underline{x = a\sec t}}\,\,\,\,\int\frac{d\,a\sec t}{\sqrt{a^2\sec^2t-a^2}} = \int\frac{a\sec t \tan t\,dt}{a\tan t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\sec t(畫三角形)\\ \therefore \sec t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\tan t = \frac{\sqrt{x^2-a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2-a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2-a^2})+C ∫x2?a2?dx?x=asect??∫a2sec2t?a2?dasect?=∫atantasecttantdt?=∫sectdt=ln∣cost1+sint?∣+C∵x=asect(畫三角形)∴sect=ax?,tant=ax2?a2??∴ln∣cost1+sint?∣+C=ln∣sect+tant∣+C=ln∣x+x2?a2?∣?ln∣a∣+C=ln(x+x2?a2?)+C
∫dxx2+a2x=atan?t ̄ ̄∫datan?ta2tan?2t+a2=∫asec?2tdtasec?t=∫sec?tdt=ln?∣1+sin?tcos?t∣+C∵x=atan?t(畫三角形)∴tan?t=xa,sec?t=x2+a2a∴ln?∣1+sin?tcos?t∣+C=ln?∣sec?t+tan?t∣+C=ln?∣x+x2+a2∣?ln?∣a∣+C=ln?(x+x2+a2)+C\int \frac{dx}{\sqrt{x^2+a^2}} \,\,\,\,\underline{\underline{x = a\tan t}}\,\,\,\,\int\frac{d\,a\tan t}{\sqrt{a^2\tan^2t+a^2}} = \int\frac{a\sec^2t \,dt}{a\sec t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\tan t(畫三角形)\\ \therefore \tan t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\sec t = \frac{\sqrt{x^2+a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2+a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2+a^2})+C ∫x2+a2?dx?x=atant??∫a2tan2t+a2?datant?=∫asectasec2tdt?=∫sectdt=ln∣cost1+sint?∣+C∵x=atant(畫三角形)∴tant=ax?,sect=ax2+a2??∴ln∣cost1+sint?∣+C=ln∣sect+tant∣+C=ln∣x+x2+a2?∣?ln∣a∣+C=ln(x+x2+a2?)+C
∫a2?x2dx=xa2?x2?∫xda2?x2=xa2?x2+∫x2a2?x2dx=xa2?x2+∫x2?a2+a2a2?x2dx=xa2?x2?∫a2?x2dx+∫a2a2?x2dx∴2∫a2?x2dx=xa2?x2+a2arcsin?xa+C∴∫a2?x2dx=a22arcsin?xa+12xa2?x2+C\int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}-\int xd\sqrt{a^2-x^2} = x\sqrt{a^2-x^2} + \int \frac{x^2}{\sqrt{a^2-x^2}}dx = x\sqrt{a^2-x^2} + \int \frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx\\ = x\sqrt{a^2-x^2} - \int \sqrt{a^2-x^2}dx+\int \frac{a^2}{\sqrt{a^2-x^2}}dx\\ \therefore 2\int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}+a^2\arcsin \frac{x}{a}+C\\ \therefore \int\sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{1}{2}x\sqrt{a^2-x^2}+C ∫a2?x2?dx=xa2?x2??∫xda2?x2?=xa2?x2?+∫a2?x2?x2?dx=xa2?x2?+∫a2?x2?x2?a2+a2?dx=xa2?x2??∫a2?x2?dx+∫a2?x2?a2?dx∴2∫a2?x2?dx=xa2?x2?+a2arcsinax?+C∴∫a2?x2?dx=2a2?arcsinax?+21?xa2?x2?+C
三、常用變換
sin?x=2sin?x2cos?x2=2sin?x2cos?x21cos?2x2=2tan?x21+tan?2x2\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}}{\frac{1}{\cos^2\frac{x}{2}}} = \frac{2\tan \frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=2sin2x?cos2x?=cos22x?1?2cos2x?sin2x???=1+tan22x?2tan2x??
1+cos?x=2cos?2x21+\cos x = 2\cos^2\frac{x}{2}1+cosx=2cos22x?(二倍角公式)
∫dx1+cos?x=∫1?cos?x1?cos?2xdx=∫1?cos?xsin?2xdx=1?cos?xsin?x+C\int\frac{dx}{1+\cos x} = \int\frac{1-\cos x}{1-\cos^2x}dx = \int\frac{1-\cos x}{\sin^2x}dx = \frac{1-\cos x}{\sin x}+C∫1+cosxdx?=∫1?cos2x1?cosx?dx=∫sin2x1?cosx?dx=sinx1?cosx?+C
待更新
總結
- 上一篇: html5 canvas带音效的新年烟花
- 下一篇: GA/百度统计/Piwik/JYC:网站