Flink集成Iceberg
Flink: 1.11.0
Iceberg: 0.11.1
hive: 2.3.8
hadoop: 3.2.2
java: 1.8
scala: 2.11
一、下載或編譯iceberg-flink-runtime jar包
下載
wget https://repo.maven.apache.org/maven2/org/apache/iceberg/iceberg-flink-runtime/0.11.1/iceberg-flink-runtime-0.11.1.jar
直接編譯
git clone https://github.com/apache/iceberg.git ./gradlew build -x test
二、啟動(dòng)Hadoop、Flink
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
${HADOOP_HOME}/sbin/start-all.sh
${FLINK_HOME}/bin/start-cluster.sh
三、Flink sql操作
1、啟動(dòng)客戶端
${FLINK_HOME}/bin/sql-client.sh embedded -j iceberg-flink-runtime-0.11.1.jar -j flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar shell
2、建Catalog
臨時(shí):
create catalog iceberg with('type'='iceberg',
'catalog-type'='hive',
'uri'='thrift://rick-82lb:9083',
'clients'='5',
'property-verion'='1',
'warehouse'='hdfs:///user/hive/warehouse');
永久:
catalogs:
- name: iceberg
type: iceberg
warehouse: hdfs:///user/hive2/warehouse
uri: thrift://rick-82lb:9083
catalog-type: hive
3、建庫(kù)和表
create database iceberg.test; create table iceberg.test.t20(id bigint);
4、寫入數(shù)據(jù)
insert into iceberg.test.t20 values (10); insert into iceberg.test.t20 values (20);
t20目錄的情況如下,后面會(huì)做具體介紹
t20
├── data
│ ├── 00000-0-9c7ff22e-a767-4b85-91ec-a2771e54c209-00001.parquet
│ └── 00000-0-ecd3f21c-1bc0-4cdc-8917-d9a1afe7ce55-00001.parquet
└── metadata
├── 00000-d864e750-e5e2-4afd-bddb-2fab1e627a21.metadata.json
├── 00001-aabfd9a8-7dcd-4aa0-99aa-f6695f39bf6b.metadata.json
├── 00002-b5b7725f-7e86-454b-8d16-0e142bc84266.metadata.json
├── 0254b8b6-4d76-473c-86c2-97acda68d587-m0.avro
├── f787e035-8f7c-43a3-b264-42057bad2710-m0.avro
├── snap-6190364701448945732-1-0254b8b6-4d76-473c-86c2-97acda68d587.avro
└── snap-6460256963744122971-1-f787e035-8f7c-43a3-b264-42057bad2710.avro
總結(jié)
以上是生活随笔為你收集整理的Flink集成Iceberg的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: SRX alarm: Autorecov
- 下一篇: 对传统视觉惯性的颠覆