mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结
MySQL支持的分區類型一共有四種:RANGE,LIST,HASH,KEY。其中,RANGE又可分為原生RANGE和RANGE COLUMNS,LIST分為原生LIST和LIST COLUMNS,HASH分為原生HASH和LINEAR HASH,KEY包含原生KEY和LINEAR HASH。關于這些分區之間的差別,改日另寫文章進行闡述。
最近,碰到一個需求,要對表的時間字段(類型:datetime)基于天進行分區。于是遍歷MySQL官方文檔分區章節,總結如下:
實現方式
主要是以下幾種:
1. 基于RANGE
2. 基于RANGE COLUMNS
3. 基于HASH
測試數據
為了測試以上三種方案,特構造了100萬的測試數據,放在test表中,test表只有兩列:id和hiredate,其中hiredate只包含10天的數據,從2015-12-01到2015-12-10。具體信息如下:
mysql> show create table testG
*************************** 1. row ***************************
Table: test
Create Table: CREATE TABLE `test` (
`id` int(11) DEFAULT NULL,
`hiredate` datetime DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
mysql> select min(hiredate),max(hiredate) from test;
+---------------------+---------------------+
| min(hiredate) | max(hiredate) |
+---------------------+---------------------+
| 2015-12-01 00:00:00 | 2015-12-10 23:59:56 |
+---------------------+---------------------+
1 row in set (0.44 sec)
mysql> select date(hiredate),count(*) from test group by date(hiredate);
+----------------+----------+
| date(hiredate) | count(*) |
+----------------+----------+
| 2015-12-01 | 99963 |
| 2015-12-02 | 100032 |
| 2015-12-03 | 100150 |
| 2015-12-04 | 99989 |
| 2015-12-05 | 99908 |
| 2015-12-06 | 99897 |
| 2015-12-07 | 100137 |
| 2015-12-08 | 100171 |
| 2015-12-09 | 99851 |
| 2015-12-10 | 99902 |
+----------------+----------+
10 rows in set (0.98 sec)
測試的維度
測試的維度主要從兩個方面進行,
一、分區剪裁
針對特定的查詢,是否能進行分區剪裁(即只查詢相關的分區,而不是所有分區)
二、查詢時間
鑒于該批測試數據是靜止的(即沒有并發進行的insert,update和delete操作),數據量也不太大,從這個維度來考量貌似意義也不是很大。
因此,重點測試第一個維度。
基于RANGE的分區方案
在這里,選用了TO_DAYS函數
CREATE TABLE range_datetime(
id INT,
hiredate DATETIME
)
PARTITION BY RANGE (TO_DAYS(hiredate) ) (
PARTITION p1 VALUES LESS THAN ( TO_DAYS('20151202') ),
PARTITION p2 VALUES LESS THAN ( TO_DAYS('20151203') ),
PARTITION p3 VALUES LESS THAN ( TO_DAYS('20151204') ),
PARTITION p4 VALUES LESS THAN ( TO_DAYS('20151205') ),
PARTITION p5 VALUES LESS THAN ( TO_DAYS('20151206') ),
PARTITION p6 VALUES LESS THAN ( TO_DAYS('20151207') ),
PARTITION p7 VALUES LESS THAN ( TO_DAYS('20151208') ),
PARTITION p8 VALUES LESS THAN ( TO_DAYS('20151209') ),
PARTITION p9 VALUES LESS THAN ( TO_DAYS('20151210') ),
PARTITION p10 VALUES LESS THAN ( TO_DAYS('20151211') )
);
插入數據并查看特定查詢的執行計劃
mysql> insert into range_datetime select * from test;
Query OK, 1000000 rows affected (8.15 sec)
Records: 1000000 Duplicates: 0 Warnings: 0
mysql> explain partitions select * from range_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | range_datetime | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400061 | Using where |
+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.03 sec)
注意執行計劃中的partitions的內容,只查詢了p7,p8,p9,p10三個分區,由此來看,使用to_days函數確實可以實現分區裁剪。
基于RANGE COLUMNS的分區方案
RANGE COLUMNS可以直接基于列,而無需像上述RANGE那種,分區的對象只能為整數。
創表語句如下:
CREATE TABLE range_columns (
id INT,
hiredate DATETIME
)
PARTITION BY RANGE COLUMNS(hiredate) (
PARTITION p1 VALUES LESS THAN ( '20151202' ),
PARTITION p2 VALUES LESS THAN ( '20151203' ),
PARTITION p3 VALUES LESS THAN ( '20151204' ),
PARTITION p4 VALUES LESS THAN ( '20151205' ),
PARTITION p5 VALUES LESS THAN ( '20151206' ),
PARTITION p6 VALUES LESS THAN ( '20151207' ),
PARTITION p7 VALUES LESS THAN ( '20151208' ),
PARTITION p8 VALUES LESS THAN ( '20151209' ),
PARTITION p9 VALUES LESS THAN ( '20151210' ),
PARTITION p10 VALUES LESS THAN ('20151211' )
);
插入數據并查看上述查詢的執行計劃
mysql> insert into range_columns select * from test;
Query OK, 1000000 rows affected (9.20 sec)
Records: 1000000 Duplicates: 0 Warnings: 0
mysql> explain partitions select * from range_columns where hiredate >= '20151207124503' and hiredate<='20151210111230';
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | range_columns | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400210 | Using where |
+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.11 sec)
同樣,使用該分區方案也實現了分區剪裁。
基于HASH的分區方案
因HASH分區對象同樣只能為整數,所以我們無法像上述RANGE COLUMNS那種直接引用列,在這里,同樣用了TO_DAYS函數進行轉換。
創表語句如下:
CREATE TABLE hash_datetime (
id INT,
hiredate DATETIME
)
PARTITION BY HASH( TO_DAYS(hiredate) )
PARTITIONS 10;
插入數據并查看上述查詢的執行計劃
mysql> insert into hash_datetime select * from test;
Query OK, 1000000 rows affected (9.43 sec)
Records: 1000000 Duplicates: 0 Warnings: 0
mysql> explain partitions select * from hash_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | hash_datetime | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | ALL | NULL | NULL | NULL | NULL | 1000500 | Using where |
+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+
1 row in set (0.00 sec)
不難看出,使用hash分區并不能有效的實現分區裁剪,至少在本例,基于天的需求中如此。
以上三種方案都是基于datetime的,那么,對于timestamp類型,又該如何選擇呢?
事實上,MySQL提供了一種基于UNIX_TIMESTAMP函數的RANGE分區方案,而且,只能使用UNIX_TIMESTAMP函數,如果使用其它函數,譬如to_days,會報如下錯誤:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。
而且官方文檔中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。
下面來測試一下基于UNIX_TIMESTAMP函數的RANGE分區方案,看其能否實現分區裁剪。
針對TIMESTAMP的分區方案
創表語句如下:
CREATE TABLE range_timestamp (
id INT,
hiredate TIMESTAMP
)
PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (
PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-02 00:00:00') ),
PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-03 00:00:00') ),
PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-04 00:00:00') ),
PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-05 00:00:00') ),
PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-06 00:00:00') ),
PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-07 00:00:00') ),
PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-08 00:00:00') ),
PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-09 00:00:00') ),
PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-10 00:00:00') ),
PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP('2015-12-11 00:00:00') )
);
插入數據并查看上述查詢的執行計劃
mysql> insert into range_timestamp select * from test;
Query OK, 1000000 rows affected (13.25 sec)
Records: 1000000 Duplicates: 0 Warnings: 0
mysql> explain partitions select * from range_timestamp where hiredate >= '20151207124503' and hiredate<='20151210111230';
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | range_timestamp | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400448 | Using where |
+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)
同樣也能實現分區裁剪。
總結:
1. 經過對比,個人傾向于第二種方案,即基于RANGE COLUMNS的分區實現。
2. 在5.7版本之前,對于DATA和DATETIME類型的列,如果要實現分區裁剪,只能使用YEAR() 和TO_DAYS()函數,在5.7版本中,又新增了TO_SECONDS()函數。
3. 其實LIST也能實現基于天的分區方案,但在這個需求上,相比于RANGE,還是顯得很雞肋。
4. TIMESTAMP類型的列,只能基于UNIX_TIMESTAMP函數進行分區,切記!
總結
以上是生活随笔為你收集整理的mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: MybatisPlus怎么处理Mysql
- 下一篇: 拼多多农场怎么种植土豆 拼多多农场种植土