Global Sensing and Measurements Reuse for Image Compressed Sensing
Global Sensing and Measurements Reuse for Image Compressed Sensing
文章目錄
- Global Sensing and Measurements Reuse for Image Compressed Sensing
- Abstract
- Introduction
- Related work
- Traditional Compressed Sensing
- Deep Compressed Sensing
- Methodology
- GSM
- GSM+
- MRB
- Loss function
- Experiments
- Conclusion
- Future work
Abstract
現有方法僅僅是從網絡中的部分特征獲得測量值,并且將其用于圖像重建一次。
【Low-level feature: 通常是指圖像中的一些小的細節信息,例如邊緣(edge),角(corner),顏色(color),像素(pixeles), 梯度(gradients)等,這些信息可以通過濾波器、SIFT或HOG獲取;
High level feature:是建立在low level feature之上的,可以用于圖像中目標或物體形狀的識別和檢測,具有更豐富的語義信息。】
所以提出了MR-CCSNet(Measurements Reuse Convolutional Compressed Sensing Network),其中GSM(Global Sensing Module)用于提取所有特征,MRB(Measurements Reuse Block)用于多次重建。
Introduction
GSM:
為了匹配維度,將池層添加到快捷連接中。
MRB:
實驗數據集:BSDS500[2]、Set5[4]、Set14[39]
評估指標:PSNR、SSIM
消融實驗:GSM和MRB是有效的
貢獻:
Related work
Traditional Compressed Sensing
即解決sparsity-regularized optimization problem
min?x12∥Φx?y∥22+λ∥Ψx∥1\min_x\frac{1}{2}\Vert\Phi x-y\Vert^2_2 +\lambda\Vert\Psi x\Vert_1 xmin?21?∥Φx?y∥22?+λ∥Ψx∥1?
Ψx\Psi xΨx是xxx相對于域Ψ\PsiΨ的變換系數,Ψx\Psi xΨx的稀疏性由111范數表示
Deep Compressed Sensing
即用神經網絡來求解逆問題,損失函數為
min?θ12∑i=1k∥xi?F(yi,θ)∥22\min_{\theta}\frac{1}{2}\sum^k_{i=1}\Vert x_i-F(y_i,\theta)\Vert^2_2 θmin?21?i=1∑k?∥xi??F(yi?,θ)∥22?
xix_ixi?是原始圖像,yiy_iyi?是觀測,FFF是神經網絡,θ\thetaθ是參數
[37]中是LAPRAN,來通過不同分辨率的多個階段同時重建原始圖像。
Methodology
采樣率:6.25%
MR-CCSNet:【a sensing network GSM】+【an initial reconstruction network】+【a deep reconstruction network】
Sensing network S(?)S(\cdot)S(?)(GSM?):
Initial reconstruction network I(?)I(\cdot)I(?):the first time to utilize the measurements
【pixel shuffle layer:一種對低分辨率特征圖上采樣的思路,假設打算將H×W×CH\times W\times CH×W×C的特征圖在長和寬的維度上擴大rrr倍變成rH×rW×CrH\times rW\times CrH×rW×C,則通過深度為r2Cr^2Cr2C的卷積對H×W×CH\times W\times CH×W×C的特征圖進行卷積得到H×W×r2CH\times W\times r^2CH×W×r2C的特征圖,再通過“周期洗牌”的操作變成rH×rW×CrH\times rW\times CrH×rW×C】
【pixel shuffle layer就是輸入H×WH\times WH×W的低分辨率的圖像,輸出rH×rWrH\times rWrH×rW的高分辨率的圖像】
Deep reconstruction network D(?)D(\cdot)D(?):the second time to utilize the measurements
Finally:
The final reconstructed image x^\hat{x}x^:
x^=D(I(y))+I(y)\hat{x}=D(I(y))+I(y) x^=D(I(y))+I(y)
GSM
【卷積神經網絡以分層方式提取特征,則靠近輸入的層學習低級特征,如線條和簡單紋理。而深的層學習高級特征,如形狀】
【To collect all level features for sampling, we use a shortcut connection to pass the features of different layers to the end, and the pooling layer is added for matching the dimensions.】
【采樣率變化時,GSM不能很好的適配,故提出GSM+】
GSM+
Different from GSM:
Add a shortcut connection between two successive layers rather than add it from different layers to the end directly.
The building block of GSM+:
yt+1=Conv(yt)+P(yt)y_{t+1}=Conv(y_t)+P(y_t) yt+1?=Conv(yt?)+P(yt?)
Conv and P denote convolution layer and meanpooling layer.
The sampling ratio is controlled by the number of building block and the blue block.
When the sampling ratio is 50%50\%50%, there is only one building block in GSM+, so GSM+ degenerate into GSM.
MRB
Phased recontructed result ft∈RC×H×Wf_t\in\mathbb{R}^{C\times H\times W}ft?∈RC×H×W and measurements y∈RC×H4×W4y\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}}y∈RC×4H?×4W? are fed into MRB.
Use two convolutional layers, denoted as Conv1Conv_1Conv1? and Conv2Conv_2Conv2?, to obtain a compacted feature map f↓∈RC×H2×W2f^{\downarrow}\in\mathbb{R}^{C\times\frac{H}{2}\times\frac{W}{2}}f↓∈RC×2H?×2W? and f↓↓∈RC×H4×W4f^{\downarrow\downarrow}\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}}f↓↓∈RC×4H?×4W?.
f↓=Conv1(ft),f↓↓=Conv2(f↓).f^{\downarrow}=Conv_1(f_t),\\ f^{\downarrow\downarrow}=Conv_2(f^{\downarrow}). f↓=Conv1?(ft?),f↓↓=Conv2?(f↓).
Fig.5 extract matching information from measurements and obtain three feature maps y1∈RC×H4×W4y_1\in\mathbb{R}^{C\times\frac{H}{4}\times\frac{W}{4}}y1?∈RC×4H?×4W?, y2∈RC×H2×W2y_2\in\mathbb{R}^{C\times\frac{H}{2}\times\frac{W}{2}}y2?∈RC×2H?×2W? and y3∈RC×H×Wy_3\in\mathbb{R}^{C\times H\times W}y3?∈RC×H×W by Multi-Scale Reusing.
對于這塊的channel融合不是很理解,如果有大佬明白的話,希望給我講一下。
Loss function
For the initial reconstruction network, lint=∑k=1n∥I(S(yk;θ);?int)?xk∥F2l_{int}=\sum^n_{k=1}\Vert I(S(y_k;\theta);\phi_{int})-x_k\Vert^2_Flint?=∑k=1n?∥I(S(yk?;θ);?int?)?xk?∥F2?.
For the deep reconstruction network, ldeep=∑k=1n∥D(I(S(yk;θ);?int);?deep)?xk∥F2l_{deep}=\sum^n_{k=1}\Vert D(I(S(y_k;\theta);\phi_{int});\phi_{deep})-x_k\Vert^2_Fldeep?=∑k=1n?∥D(I(S(yk?;θ);?int?);?deep?)?xk?∥F2?
θ\thetaθ, ?int\phi_{int}?int?, ?deep\phi_{deep}?deep? denote the parameters of S(?)S(\cdot)S(?), I(?)I(\cdot)I(?) and D(?)D(\cdot)D(?)
The loss of MR-CCSNet is l=ldeep+lintl=l_{deep}+l_{int}l=ldeep?+lint?.
Experiments
Training datasets: 400 images from BSDS500[2]
Three standard benchmark datasets: Set5[4], Set14[39], BSDS100[2]
Conclusion
Future work
In the sensing network, pooling operation loses information about the low-level features.
Attention mechanism can effectively help us in extracting matching features from measurements.
In the real-world, because there are noise in the measurements, using them multiple times will introduce noise in the reconstruction process.
ching features from measurements.
In the real-world, because there are noise in the measurements, using them multiple times will introduce noise in the reconstruction process.
總結
以上是生活随笔為你收集整理的Global Sensing and Measurements Reuse for Image Compressed Sensing的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2017年第十七届迪培思广州国际广告展会
- 下一篇: 数据结构练习题——线性表(二)