奇妙的裴波那契数列和黄金分割
斐波那契數列指的是這樣一個數列:0,1,1,2,3,5,8,13,21……
這個數列從第三項開始,每一項都等于前兩項之和。它的通項公式為:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(又叫“比內公式”,是用無理數表示有理數的一個范例。)【√5表示根號5】
很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。
【該數列有很多奇妙的屬性】
比如:隨著數列項數的增加,前一項與后一項之比越逼近黃金分割0.6180339887……
還有一項性質,從第二項開始,每個奇數項的平方都比前后兩項之積少(請自己驗證后自己確定)1,每個偶數項的平方都比前后兩項之積多(請自己驗證后自己確定)1。
如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什么64=65?其實就是利用了斐波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前后兩塊的面積確實差1,只不過后面那個圖中有一條細長的狹縫,一般人不容易注意到。
如果任意挑兩個數為起始,比如5、-2.4,然后兩項兩項地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你將發現隨著數列的發展,前后兩項之比也越來越逼近黃金分割,且某一項的平方與前后兩項之積的差值也交替相差某個值。如果所有的數都要求是自然數,能找出被任意正整數整除的項的此類數列,必然是斐波那契數列的某項開始每一項的倍數,如4,6,10,16,26……(從2開始每個數的兩倍)。
斐波那契數列的第n項同時也代表了集合{1,2,...,n}中所有不包含相鄰正整數的子集個數。
斐波那契數列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性質:
1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1
2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)-1
3.f(0)+f(2)+f(4)+…+f(2n)=f(2n+1)-1
4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)
5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1
6.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)
7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)
8.f(2n-1)=[f(n)]^2-[f(n-2)]^2
(1)細察下列各種花,它們的花瓣的數目具有斐波那契數:延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬斗菜、百合花、蝴蝶花。
(2)細察以下花的類似花瓣部分,它們也具有斐波那契數:紫宛、大波斯菊、雛菊。
斐波那契數經常與花瓣的數目相結合:
3………………………百合和蝴蝶花
5………………………藍花耬斗菜、金鳳花、飛燕草
8………………………翠雀花
13………………………金盞草
21………………………紫宛
34,55,84……………雛菊
(3)斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝干上選一片葉子,記其為數0,然后依序點數葉子(假定沒有折損),直到到達與那息葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
(4)斐波那契數列與黃金比值
相繼的斐波那契數的比的數列:
它們交錯地或大于或小于黃金比的值。該數列的極限為。這種聯系暗示了無論(尤其在自然現象中)在哪里出現黃金比、黃金矩形或等角螺線,那里也就會出現斐波那契數,反之亦然。
【與之相關的數學問題】
1.排列組合.
有一段樓梯有10級臺階,規定每一步只能跨一級或兩級,要登上第10級臺階有幾種不同的走法?
這就是一個斐波那契數列:登上第一級臺階有一種登法;登上兩級臺階,有兩種登法;登上三級臺階,有三種登法;登上四級臺階,有五種登法……
1,2,3,5,8,13……所以,登上十級,有89種
2.數列中相鄰兩項的前項比后項的極限.
就是問,當n趨于無窮大時,F(n)/F(n+1)的極限是多少?
這個可由它的通項公式直接得到,極限是(-1+√5)/2,這個就是所謂的黃金分割點,也是代表大自然的和諧的一個數字。
3.求遞推數列a(1)=1,a(n+1)=1+1/a(n).的通項公式.
由數學歸納法可以得到:a(n)=F(n+1)/F(n).將菲波那契數列的通項式代入,化簡就得結果。
【斐波那契數列別名】
斐波那契數列又因數學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為“兔子數列”。
斐波那契數列
一般而言,兔子在出生兩個月后,就有繁殖能力,一對兔子每個月能生出一對小兔子來。如果所有兔都不死,那么一年以后可以繁殖多少對兔子?
我們不妨拿新出生的一對小兔子分析一下:
第一個月小兔子沒有繁殖能力,所以還是一對;
兩個月后,生下一對小兔民數共有兩對;
三個月以后,老兔子又生下一對,因為小兔子還沒有繁殖能力,所以一共是三對;
------
依次類推可以列出下表:
經過月數:---0---1---2---3---4---5---6---7---8---9--10--11--12
兔子對數:---1---1---2---3---5---8--13--21--34--55--89-144-233
表中數字1,1,2,3,5,8---構成了一個數列。這個數列有關十分明顯的特點,那是:前面相鄰兩項之和,構成了后一項。
這個特點的證明:每月的大兔子數為上月的兔子數,每月的小兔子數為上月的大兔子數,即上上月的兔子數,相加。
這個數列是意大利中世紀數學家斐波那契在<算盤全書>中提出的,這個級數的通項公式,除了具有a(n+2)=an+a(n+1)/的性質外,還可以證明通項公式為:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)
【數列值的另一種求法】 F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距離 x 最近的整數。
斐波那契數列的應用】 一位魔術師拿著一塊邊長為8英尺的正方形地毯,對他的地毯匠朋友說:“請您把這塊地毯分成四小塊,再把它們縫成一塊長13英尺,寬5英尺的長方
形地毯?!边@位匠師對魔術師算術之差深感驚異,因為商者之間面積相差達一平方英尺呢!可是魔術師竟讓匠師用圖2和圖3的辦法達到了他的目的!
這真是不可思議的事!親愛的讀者,你猜得到那神奇的一 平方英尺究竟跑到哪兒去呢?
斐波那契數列在自然科學的其他分支,也有許多應用。例如,樹木的生長,由于新生的枝條,往往需要一段“休息”時間,供自身生長,而后才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以后長出一條新枝;第二年新枝“休息”,老枝依舊萌發;此后,老枝與“休息”過一年的枝同時萌發,當年生的新枝則次年“休息”。這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的“魯德維格定律”。
另外,觀察延齡草,野玫瑰,南美血根草,大波斯菊,金鳳花,耬斗菜,百合花,蝴蝶花的花瓣.可以發現它們花瓣數目具有斐波那契數:3,5,8,13,21……
斐波那契螺旋
具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
具有13條逆時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該并非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的“優化方式”,它能使所有種子具有差不多的大小卻又疏密得當,不至于在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。葉子的生長方式也是如此,對于許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為“黃金角度”,因為它和整個圓周360度之比是黃金分割數1.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。
介紹 把一條線段分割為兩部分,使其中一部分與全長之比等于另一部分與這部分之比。其比值是[5^(1/2)-1]/2,取其前三位數字的近似值是0.618。由于按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建筑等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做“斐波那契數列”,這些數被稱為“斐波那契數”。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
斐波那契數列與黃金分割有什么關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨于黃金分割比的。即f(n)/f(n-1)-→0.618…。由于斐波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出后面更大的斐波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
不僅這個由1,1,2,3,5....開始的“斐波那契數”是這樣,隨便選兩個整數,然后按照斐波那契數的規律排下去,兩數間比也是會逐漸逼近黃金比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我國的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什么?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿后出現的所有三角形,都是黃金分割三角形。
黃金分割三角形還有一個特殊性,所有的三角形都可以用四個與其本身全等的三角形來生成與其本身相似的三角形,但黃金分割三角形是唯一一種可以用5個而不是4個與其本身全等的三角形來生成與其本身相似的三角形的三角形。
由于五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等于0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對于全部之比,等于另一部分對于該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...后二數之比2/3,3/5,5/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前后,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為“金法”,17世紀歐洲的一位數學家,甚至稱它為“各種算法中最可寶貴的算法”。這種算法在印度稱之為“三率法”或“三數法則”,也就是我們現在常說的比例方法。
其實有關“黃金分割”,我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,后來傳入了印度。經考證。歐洲的比例算法是源于我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,采用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建筑物中某些線段的比就科學采用了黃金分割,舞臺上的報幕員并不是站在舞臺的正中央,而是偏在臺上一側,以站在舞臺長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有采用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建筑、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為“黃金分割”。
黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取0.618 ,就像圓周率在應用時取3.14一樣。
黃金矩形(Golden Rectangle)的長寬之比為黃金分割率,換言之,矩形的長邊為短邊 1.618倍。黃金分割率和黃金矩形能夠給畫面帶來美感,令人愉悅。在很多藝術品以及大自然中都能找到它。希臘雅典的巴特農神廟就是一個很好的例子,達·芬奇的《維特魯威人》符合黃金矩形?!睹赡塞惿返哪樢卜宵S金矩形,《最后的晚餐》同樣也應用了該比例布局。
發現歷史
由于公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。
公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,并建立起比例理論。
公元前300年前后歐幾里得撰寫《帕喬利》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。
中世紀后,黃金分割被披上神秘的外衣,意大利數家帕喬利稱中末比為神圣比例,并專門為此著書立說。德國天文學家開普勒稱黃金分割為神圣分割。
到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗于1953年首先提出的,70年代在中國推廣。
________________________
|
a b
a:b=(a+b):a
通常用希臘字母Ф表示這個值。
黃金分割奇妙之處,在于其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為(√5-1)/2
生活應用
有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和采光效果最佳。
建筑師們對數學0.618…特別偏愛,無論是古埃及的金字塔,還是巴黎的圣母院,或者是近世紀的法國埃菲爾鐵塔,都有與0.618…有關的數據。人們還發現,一些名畫、雕塑、攝影作品的主題,大多在畫面的0.618…處。藝術家們認為弦樂器的琴馬放在琴弦的0.618…處,能使琴聲更加柔和甜美。
數字0.618…更為數學家所關注,它的出現,不僅解決了許多數學難題(如:十等分、五等分圓周;求18度、36度角的正弦、余弦值等),而且還使優選法成為可能。優選法是一種求最優化問題的方法。如在煉鋼時需要加入某種化學元素來增加鋼材的強度,假設已知在每噸鋼中需加某化學元素的量在1000—2000克之間,為了求得最恰當的加入量,需要在1000克與2000克這個區間中進行試驗。通常是取區間的中點(即1500克)作試驗。然后將試驗結果分別與1000克和2000克時的實驗結果作比較,從中選取強度較高的兩點作為新的區間,再取新區間的中點做試驗,再比較端點,依次下去,直到取得最理想的結果。這種實驗法稱為對分法。但這種方法并不是最快的實驗方法,如果將實驗點取在區間的0.618處,那么實驗的次數將大大減少。這種取區間的0.618處作為試驗點的方法就是一維的優選法,也稱0.618法。實踐證明,對于一個因素的問題,用“0.618法”做16次試驗就可以完成“對分法”做2500次試驗所達到的效果。因此大畫家達·芬奇把0.618…稱為黃金數。
0.618與戰爭
0.618與戰略戰役
0.618,一個極為迷人而神秘的數字,而且它還有著一個很動聽的名字——黃金分割律,它是古希臘著名哲學家、數學家畢達哥拉斯于2500多年前發現的。古往今來,這個數字一直被后人奉為科學和美學的金科玉律。在藝術史上,幾乎所有的杰出作品都不謀而合地驗證了這一著名的黃金分割律,無論是古希臘帕特農神廟,還是中國古代的兵馬俑,它們的垂直線與水平線之間竟然完全符合1比0.618的比例。
也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?
0.618與武器裝備
在冷兵器時代,雖然人們還根本不知道黃金分割率這個概念,但人們在制造寶劍、大刀、長矛等武器時,黃金分割率的法則也早已處處體現了出來,因為按這樣的比例制造出來的兵器,用起來會更加得心應手。
當發射子彈的步槍剛剛制造出來的時候,它的槍把和槍身的長度比例很不科學合理,很不方便于抓握和瞄準。到了1918年,一個名叫阿爾文·約克的美遠征軍下士,對這種步槍進行了改造,改進后的槍型槍身和槍把的比例恰恰符合0.618的比例。
實際上,從鋒利的馬刀刃口的弧度,到子彈、炮彈、彈道導彈沿彈道飛行的頂點;從飛機進入俯沖轟炸狀態的最佳投彈高度和角度,到坦克外殼設計時的最佳避彈坡度,我們也都能很容易地發現黃金分割率無處不在。
在大炮射擊中,如果某種間瞄火炮的最大射程為12公里,最小射程為4公里,則其最佳射擊距離在9公里左右,為最大射程的2/3,與0.618十分接近。在進行戰斗部署時,如果是進攻戰斗,大炮陣地的配置位置一般距離己方前沿為1/3倍最大射程處,如果是防御戰斗,則大炮陣地應配置距己方前沿2/3倍最大射程處。
0.618與戰術布陣
在我國歷史上很早發生的一些戰爭中,就無不遵循著0.618的規律。春秋戰國時期,晉厲公率軍伐鄭,與援鄭之楚軍決戰于鄢陵。厲公聽從楚叛臣苗賁皇的建議,把楚之右軍作為主攻點,因此以中軍之一部進攻楚軍之左軍;以另一部進攻楚軍之中軍,集上軍、下軍、新軍及公族之卒,攻擊楚之右軍。其主要攻擊點的選擇,恰在黃金分割點上。
把黃金分割律在戰爭中體現得最為出色的軍事行動,還應首推成吉思汗所指揮的一系列戰事。數百年來,人們對成吉思汗的蒙古騎兵,為什么能像颶風掃落葉般地席卷歐亞大陸頗感費解,因為僅用游牧民族的彪悍勇猛、殘忍詭譎、善于騎射以及騎兵的機動性這些理由,都還不足以對此做出令人完全信服的解釋?;蛟S還有別的更為重要的原因?仔細研究之下,果然又從中發現了黃金分割律的偉大作用。蒙古騎兵的戰斗隊形與西方傳統的方陣大不相同,在它的5排制陣形中,人盔馬甲的重騎兵和快捷靈動輕騎兵的比例為2:3,這又是一個黃金分割!你不能不佩服那位馬背軍事家的天才妙悟,被這樣的天才統帥統領的大軍,不縱橫四海、所向披靡,那才怪呢。
馬其頓與波斯的阿貝拉之戰,是歐洲人將0.618用于戰爭中的一個比較成功的范例。在這次戰役中,馬其頓的亞歷山大大帝把他的軍隊的攻擊點,選在了波斯大流士國王的軍隊的左翼和中央結合部。巧的是,這個部位正好也是整個戰線的“黃金點”,所以盡管波斯大軍多于亞歷山大的兵馬數十倍,但憑借自己的戰略智慧,亞歷山大把波斯大軍打得潰不成軍。這一戰爭的深刻影響直到今天仍清晰可見,在海灣戰爭中,多國部隊就是采用了類似的布陣法打敗了伊拉克軍隊。
兩支部隊交戰,如果其中之一的兵力、兵器損失了1/3以上,就難以再同對方交戰下去。正因為如此,在現代高技術戰爭中,有高技術武器裝備的軍事大國都采取長時間空中打擊的辦法,先徹底摧毀對方1/3以上的兵力、武器,爾后再展開地面進攻。讓我們以海灣戰爭為例。戰前,據軍事專家估計,如果共和國衛隊的裝備和人員,經空中轟炸損失達到或超過30%,就將基本喪失戰斗力。為了使伊軍的損耗達到這個臨界點,美英聯軍一再延長轟炸時間,持續38天,直到摧毀了伊拉克在戰區內428輛坦克中的38%、2280輛裝甲車中的32%、3100門火炮中的47%,這時伊軍實力下降至60%左右,這正是軍隊喪失戰斗力的臨界點。也就是將伊拉克軍事力量削弱到黃金分割點上后,美英聯軍才抽出“沙漠軍刀”砍向薩達姆,在地面作戰只用了100個小時就達到了戰爭目的。在這場被譽為“沙漠風暴”的戰爭中,創造了一場大戰僅陣亡百余人奇跡的施瓦茨科普夫將軍,算不上是大師級人物,但他的運氣卻幾乎和所有的軍事藝術大師一樣好。其實真正重要的并不是運氣,而是這位率領一支現代大軍的統帥,在進行戰爭的運籌帷幄中,有意無意地涉及了0.618,也就是說,他多多少少托了黃金分割律的福。
此外,在現代戰爭中,許多國家的軍隊在實施具體的進攻任務時,往往是分梯隊進行的,第一梯隊的兵力約占總兵力的2/3,第二梯隊約占1/3。在第一梯隊中,主攻方向所投入的兵力通常為第一梯隊總兵力的2/3,助攻方向則為1/3。防御戰斗中,第一道防線的兵力通常為總數的2/3,第二道防線的兵力兵器通常為總數的1/3。
拿破侖大帝敗于黃金分割線?
0.618不僅在武器和一時一地的戰場布陣上體現出來,而且在區域廣闊、時間跨度長的宏觀的戰爭中,也無不得到充分地展現。
一代梟雄的的拿破侖大帝可能怎么也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役后,拿破侖于此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他并未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。后來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。
1941年6月22日,納粹德國啟動了針對蘇聯的“巴巴羅薩”計劃,實行閃電戰,在極短的時間里,就迅速占領了的蘇聯廣袤的領土,并繼續向該國的縱深推進。在長達兩年多的時間里,德軍一直保持著進攻的勢頭,直到1943年8月,“巴巴羅薩”行動結束,德軍從此轉入守勢,再也沒能力對蘇軍發起一次可以稱之為戰役行動的進攻。被所有戰爭史學家公認為蘇聯衛國戰爭轉折點的斯大林格勒戰役,就發生在戰爭爆發后的第17個月,正是德軍由盛而衰的26個月時間軸線的黃金分割點。
證明方法
設一條線段AB的長度為a,C點在靠近B點的黃金分割點上且AC為b
AC/AB=BC/AC
b^2=a*(a-b)
b^2=a^2-ab
a^2-ab+(1/4)b^2=(5/4)*b^2
(a-b/2)^2=(5/4)b^2
a-b/2=(√5/2)*b
a-b/2=(√5)b/2
a=b/2+(√5)b/2
a=b(√5+1)/2
b/a=(√5-1)/2
線段的黃金分割(尺規作圖)
1.設已知線段為AB,過點B作BC⊥AB,且BC=AB/2;
2.連結AC;
3.以C為圓心,CB為半徑作弧,交AC于D;
4.以A為圓心,AD為半徑作弧,交AB于P,則點P就是AB的黃金分割點。
古希臘巴特農神廟是舉世聞名的完美建筑,它的高和寬的比是0.618。建筑師們發現,按這樣的比例來設計殿堂,殿堂更加雄偉、美麗;去設計別墅,別墅將更加舒適、漂亮.連一扇門窗若設計為黃金矩形都會顯得更加協調和令人賞心悅目.
事實上,在一個黃金矩形中,以一個頂點為圓心,矩形的較短邊為半徑作一個四分之一圓,交較長邊與一點,過這個點,作一條直線垂直于較長邊,這時,生成的新矩形(不是那個正方形)仍然是一個黃金矩形,這個操作可以無限重復,產生無數個黃金矩形。
令人驚訝的是,人體自身也和0.618密切相關,對人體解剖很有研究的意大利畫家達·芬奇發現,人的肚臍位于身長的0.618處;咽喉位于肚臍與頭頂長度的0.618處;肘關節位于肩關節與指頭長度的0.618處,人體存在著肚臍、咽喉、膝蓋、肘關節四個黃金分割點,它們也是人賴以生存的四處要害。
黃金分割與人的關系
黃金分割與人的關系相當密切。地球表面的緯度范圍是0——90°,對其進行黃金分割,則34.38°——55.62°正是地球的黃金地帶。無論從平均氣溫、年日照時數、年降水量、相對濕度等方面都是具備適于人類生活的最佳地區。說來也巧,這一地區幾乎囊括了世界上所有的發達國家。
人體美學中的黃金分割
人體美學觀察受到種族、社會、個人各方面因素的影響,牽涉到形體與精神、局部與整體的辯證統一,只有整體的和諧、比例協調,才能稱得上一種完整的美。本文主要討論美學觀察的一些定律。
(一)黃金分割律這是公元前六世紀古希臘數學家畢達哥拉斯所發現,后來古希臘美學家柏拉圖將此稱為黃金分割。這其實是一個數字的比例關系,即把一條線分為兩部分,此時長段與短段之比恰恰等于整條線與長段之比,其數值比為1.618 : 1或1 : 0.618,也就是說長段的平方等于全長與短段的乘積。0.618,以嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。為什么人們對這樣的比例,會本能地感到美的存在?其實這與人類的演化和人體正常發育密切相關。據研究,從猿到人的進化過程中,人體結構中有許多比例關系接近0.618,從而使人體美在幾十萬年的歷史積淀中固定下來。人類最熟悉自己,勢必將人體美作為最高的審美標準,凡是與人體相似的物體就喜歡它,就覺得美。于是黃金分割律作為一種重要形式美法則,成為世代相傳的審美經典規律,至今不衰!近年來,在研究黃金分割與人體關系時,發現了人體結構中有14個“黃金點”(物體短段與長段之比值為 0.618),12個“黃金矩形”(寬與長比值為 0.618的長方形)和2個“黃金指數”(兩物體間的比例關系為 0.618)。黃金點:(1)肚臍:頭頂-足底之分割點;(2)咽喉:頭頂-肚臍之分割點;(3)、(4)膝關節:肚臍-足底之分割點;(5)、(6)肘關節:肩關節-中指尖之分割點;(7)、(8)乳頭:軀干乳頭縱軸上這分割點;(9)眉間點:發際-頦底間距上1/3與中下2/3之分割點;(10)鼻下點:發際-頦底間距下1/3與上中2/3之分割點;(11)唇珠點:鼻底-頦底間距上1/3與中下2/3之分割點;(12)頦唇溝正路點:鼻底-頦底間距下1/3與上中2/3之分割點;(13)左口角點:口裂水平線左1/3與右2/3之分割點;(14) 右口角點:口裂水平線右1/3與左2/3之分割點。 面部黃金分割律 面部三庭五眼黃金矩形:(1)軀體輪廓:肩寬與臀寬的平均數為寬,肩峰至臀底的高度為長;(2)面部輪廓:眼水平線的面寬為寬,發際至頦底間距為長;(3)鼻部輪廓:鼻翼為寬,鼻根至鼻底間距為長;(4)唇部輪廓:靜止狀態時上下唇峰間距為寬,口角間距為長;(5)、(6)手部輪廓:手的橫徑為寬,五指并攏時取平均數為長;(7)、(8)、(9)、(10)、(11)、(12)上頜切牙、側切牙、尖牙(左右各三個)輪廓:最大的近遠中徑為寬,齒齦徑為長。
黃金指數:(1)反映鼻口關系的鼻唇指數:鼻翼寬與口角間距之比近似黃金數;(2)反映眼口關系的目唇指數:口角間距與兩眼外眥間距之比近似黃金數。 0.618,作為一個人體健美的標準尺度之一,是無可非議的,但不能忽視其存在著“模糊特性”,它同其它美學參數一樣,都有一個允許變化的幅度,受種族、地域、個體差異的制約。
(二)比例關系是用數字來表示人體美,并根據一定的基準進行比較。用同一人體的某一部位作為基準,來判定它與人體的比例關系的方法被稱為同身方法。分為三組:系數法,常指頭高身長指數,如畫人體有坐五、立七,即身高在坐位時為頭高的五倍、立位時為7或7.5倍;百分數法,將身長視為100%,身體各部位在其中的比例;兩分法:即把人體分成大小兩部分,大的部分從腳到臍,小的部分為臍到頭頂。標準的面型,其長寬比例協調,符合三停五眼。三停是指臉型的長度,從頭部發際到下頦的距離分為三等分,即從發際到眉、眉到鼻尖、鼻尖到下頦各分為一等分,各稱一停共三停;五眼是指臉型的寬度,雙耳間正面投影的長度為五只眼裂的長度,除眼裂外、內此間距為一眼裂長度、兩側外眥角到耳部各有一眼裂長度.
醫學與0.618有著千絲萬縷的聯系,它可解釋人為什么在環境22至24攝攝氏度時感覺最舒適。因為人的體溫為37°C與0.618的乘積為22.8°C,而且這一溫度中肌體的新陳代謝、生理節奏和生理功能均處于最佳狀態??茖W家們還發現,當外界環境溫度為人體溫度的0.618倍時,人會感到最舒服.現代醫學研究還表明,0.618與養生之道息息相關,動與靜是一個0.618的比例關系,大致四分動六分靜,才是最佳的養生之道。醫學分析還發現,飯吃六七成飽的幾乎不生胃病。
高雅的藝術殿堂里,自然也留下了黃金數的足跡。畫家們發現,按0.618:1來設計腿長與身高的比例,畫出的人體身材最優美,而現今的女性,腰身以下的長度平均只占身高的0.58,因此古希臘維納斯女神塑像及太陽神阿波羅的形象都通過故意延長雙腿,使之與身高的比值為0.618,從而創造藝術美。難怪許多姑娘都愿意穿上高跟鞋,而芭蕾舞演員則在翩翩起舞時,不時地踮起腳尖。音樂家發現,二胡演奏中,“千金”分弦的比符合0.618∶1時,奏出來的音調最和諧、最悅耳。
植物葉子,千姿百態,生機盎然,給大自然帶來了美麗的綠色世界。盡管葉子形態隨種而異,但它在莖上的排列順序(稱為葉序),卻是極有規律的。有些植物的花瓣及主干上枝條的生長,也是符合這個規律的。你從植物莖的頂端向下看,經細心觀察,發現上下層中相鄰的兩片葉子之間約成137.5°角。如果每層葉子只畫一片來代表,第一層和第二層的相鄰兩葉之間的角度差約是137.5°,以后二到三層,三到四層,四到五層……兩葉之間都成這個角度。植物學家經過計算表明:這個角度對葉子的采光、通風都是最佳的。葉子的排布,多么精巧!葉子間的137.5°角中,藏有什么“密碼”呢?我們知道,一周是360°,360°-137.5°=222.5°,而137.5°∶222.5°≈0.618。瞧,這就是“密碼”!葉子的精巧而神奇的排布中,竟然隱藏著0.618。
黃金分割與裴波那契數列
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什么關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨于黃金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出后面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我國的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什么?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿后出現的所有三角形,都是黃金分割三角形。
由于五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等于0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對于全部之比,等于另一部分對于該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...后二數之比2/3,3/5,4/8,8/13,13/21,...近似值的。
總結
以上是生活随笔為你收集整理的奇妙的裴波那契数列和黄金分割的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 大数据更懂球?
- 下一篇: ARM处理器对比分析