涉及欧拉常数的一道数学题
涉及歐拉常數的一道數學題
計算lim?n→∞1n(n12+23+...+nn+1)n\text{計算}\lim_{n\rightarrow \infty} \frac{1}{n}\left( \frac{n}{\frac{1}{2}+\frac{2}{3}+...+\frac{n}{n+1}} \right) ^n計算n→∞lim?n1?(21?+32?+...+n+1n?n?)n
解:12+23+...+nn+1=n+1?(1+12+13+...+1n+1)\text{解:}\frac{1}{2}+\frac{2}{3}+...+\frac{n}{n+1}=n+1-\left( 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+1} \right) 解:21?+32?+...+n+1n?=n+1?(1+21?+31?+...+n+11?)
根據歐拉常數的定義:γ=lim?n→∞(∑k=1n1k?ln?n)\text{根據歐拉常數的定義:}\gamma =\lim_{n\rightarrow \infty} \left( \sum_{k=1}^n{\frac{1}{k}-\ln n} \right) 根據歐拉常數的定義:γ=n→∞lim?(k=1∑n?k1??lnn)
不妨設γn+1=lim?n→∞(∑k=1n+11k?ln?(n+1))即n+1?(1+12+13+...+1n+1)=n+1?ln?(n+1)?γn+1∴n12+23+...+nn+1=nn+1?ln?(n+1)?γn+1=11+1?ln?(n+1)?γn+1n記1?ln?(n+1)?γn+1n=an,易得lim?n→∞an=0\text{不妨設}\gamma _{n+1}=\lim_{n\rightarrow \infty} \left( \sum_{k=1}^{n+1}{\frac{1}{k}-\ln \left( n+1 \right)} \right) \\ \text{即}n+1-\left( 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+1} \right) =n+1-\ln \left( n+1 \right) -\gamma _{n+1} \\ \therefore \frac{n}{\frac{1}{2}+\frac{2}{3}+...+\frac{n}{n+1}}=\frac{n}{n+1-\ln \left( n+1 \right) -\gamma _{n+1}}=\frac{1}{1+\frac{1-\ln \left( n+1 \right) -\gamma _{n+1}}{n}} \\ \text{記}\frac{1-\ln \left( n+1 \right) -\gamma _{n+1}}{n}=a_n,\text{易得}\lim_{n\rightarrow \infty} a_n=0 不妨設γn+1?=n→∞lim?(k=1∑n+1?k1??ln(n+1))即n+1?(1+21?+31?+...+n+11?)=n+1?ln(n+1)?γn+1?∴21?+32?+...+n+1n?n?=n+1?ln(n+1)?γn+1?n?=1+n1?ln(n+1)?γn+1??1?記n1?ln(n+1)?γn+1??=an?,易得n→∞lim?an?=0
原題目轉化為:lim?n→∞1n(11+an)n=lim?n→∞eln?1n+nln?(11+an)=e?ln?n?nln?(1+an)\text{原題目轉化為:}\lim_{n\rightarrow \infty} \frac{1}{n}\left( \frac{1}{1+a_n} \right) ^n \\ \,\, =\lim_{n\rightarrow \infty} e^{\ln \frac{1}{n}+n\ln \left( \frac{1}{1+an} \right)} \\ \,\, =e^{-\ln n-n\ln \left( 1+a_n \right)} 原題目轉化為:n→∞lim?n1?(1+an?1?)n=n→∞lim?elnn1?+nln(1+an1?)=e?lnn?nln(1+an?)
n(1+an)=an+O(ln?2nn2)≈an故?ln?n?nln?(1+an)=?ln?n?nan=?ln?n?n1?ln?(n+1)?γn+1n=γn+1?1+ln?(1+1n)=γn+1?1∴lim?n→∞1n(n12+23+...+nn+1)n=eγn+1?1其中γn+1=lim?n→∞(∑k=1n+11k?ln?(n+1))\mathrm{n}\left( 1+a_n \right) =a_n+O\left( \frac{\ln ^2n}{n^2} \right) \approx a_n \\ \text{故}-\ln n-n\ln \left( 1+a_n \right) =-\ln n-na_n \\ \,\, =-\ln n-n\frac{1-\ln \left( n+1 \right) -\gamma _{n+1}}{n} \\ \,\, =\gamma _{n+1}-1+\ln \left( 1+\frac{1}{n} \right) \\ \,\, =\gamma _{n+1}-1 \\ \therefore \lim_{n\rightarrow \infty} \frac{1}{n}\left( \frac{n}{\frac{1}{2}+\frac{2}{3}+...+\frac{n}{n+1}} \right) ^n=e^{\gamma _{n+1}-1} \\ \text{其中}\gamma _{n+1}=\lim_{n\rightarrow \infty} \left( \sum_{k=1}^{n+1}{\frac{1}{k}-\ln \left( n+1 \right)} \right) n(1+an?)=an?+O(n2ln2n?)≈an?故?lnn?nln(1+an?)=?lnn?nan?=?lnn?nn1?ln(n+1)?γn+1??=γn+1??1+ln(1+n1?)=γn+1??1∴n→∞lim?n1?(21?+32?+...+n+1n?n?)n=eγn+1??1其中γn+1?=n→∞lim?(k=1∑n+1?k1??ln(n+1))
總結
以上是生活随笔為你收集整理的涉及欧拉常数的一道数学题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 沃尔沃押注“超大尺寸HUD”,软硬件同步
- 下一篇: iterm2 ssh 乱码_Royal