batchnorm pytorch_GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总
【新智元導讀】該項目是Jupyter Notebook中TensorFlow和PyTorch的各種深度學習架構,模型和技巧的集合。內容非常豐富,適用于Python 3.7,適合當做工具書。
本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各種深度學習架構,模型和技巧,內容非常豐富,適用于Python 3.7,適合當做工具書。
大家可以將內容按照需要進行分割,打印出來,或者做成電子書等,隨時查閱。
傳統機器學習
感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb
邏輯回歸
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb
Softmax Regression (Multinomial Logistic Regression)
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb
多層感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb
具有Dropout多層感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb
具有批量歸一化的多層感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb
具有反向傳播的多層感知器
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb
CNN
基礎
CNN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb
具有He初始化的CNN
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb
概念
用等效卷積層代替完全連接
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb
全卷積
全卷積神經網絡
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb
AlexNet
AlexNet on CIFAR-10
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb
VGG
CNN VGG-16
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb
VGG-16 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb
CNN VGG-19
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb
ResNet
ResNet and Residual Blocks
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb
ResNet-18 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb
ResNet-18 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb
ResNet-34 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb
ResNet-34 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb
ResNet-50 Digit Classifier Trained on MNIST
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb
ResNet-50 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb
ResNet-101 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb
ResNet-152 Gender Classifier Trained on CelebA
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb
Network in Network
Network in Network CIFAR-10 Classifier
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb
度量學習
具有多層感知器的孿生網絡
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb
自動編碼機
全連接自動編碼機
自動編碼機
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb
具有解卷積/轉置卷積的卷積自動編碼機
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb
具有解卷積的卷積自動編碼機(無池化操作)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb
具有最近鄰插值的卷積自動編碼機
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb
具有最近鄰插值的卷積自動編碼機 - 在CelebA上進行訓練
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb
具有最近鄰插值的卷積自動編碼機 - 在Quickdraw上訓練
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb
變分自動編碼機
變分自動編碼機
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb
卷積變分自動編碼機
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb
條件變分自動編碼機
條件變分自動編碼機(重建丟失中帶標簽)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb
條件變分自動編碼機(重建損失中沒有標簽)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb
卷積條件變分自動編碼機(重建丟失中帶標簽)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb
卷積條件變分自動編碼機(重建損失中沒有標簽)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb
GAN
MNIST上完全連接的GAN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb
MNIST上的卷積GAN
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb
具有標簽平滑的MNIST上的卷積GAN
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb
RNN
Many-to-one: Sentiment Analysis / Classification
A simple single-layer RNN (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb
A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb
RNN with LSTM cells (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb
RNN with LSTM cells and Own Dataset in CSV Format (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb
RNN with GRU cells (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
Multilayer bi-directional RNN (IMDB)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb
Many-to-Many / Sequence-to-Sequence
A simple character RNN to generate new text (Charles Dickens)
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb
序數回歸
Ordinal Regression CNN -CORAL w. ResNet34 on AFAD-Lite
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb
Ordinal Regression CNN -Niu et al. 2016 w. ResNet34 on AFAD-Lite
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb
Ordinal Regression CNN -Beckham and Pal 2016 w. ResNet34 on AFAD-Lite
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb
技巧和竅門
Cyclical Learning Rate
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb
PyTorch工作流程和機制
自定義數據集
使用PyTorch數據集加載實用程序用于自定義數據集-CSV文件轉換為HDF5
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb
使用PyTorch數據集加載自定義數據集的實用程序 - 來自CelebA的圖像
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb
使用PyTorch數據集加載自定義數據集的實用程序 - 從Quickdraw中提取
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb
使用PyTorch數據集加載實用程序用于自定義數據集 - 從街景房號(SVHN)數據集中繪制
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/custom-data-loader-svhn.ipynb
訓練和預處理
帶固定內存的數據加載
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb
標準化圖像
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb
圖像轉換示例
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb
Char-RNN with Own Text File
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb
Sentiment Classification RNN with Own CSV File
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb
并行計算
在CelebA上使用具有DataParallel -VGG-16性別分類器的多個GPU
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb
其它
Sequential API and hooks
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-sequential.ipynb
圖層內的權重共享
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb
僅使用Matplotlib在Jupyter Notebook中繪制實時訓練性能
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/plot-jupyter-matplotlib.ipynb
Autograd
在PyTorch中獲取中間變量的漸變
PyTorch:
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb
TensorFlow工作流及機制
自定義數據集
使用NumPy NPZ Archives為Minibatch訓練添加圖像數據集
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb
使用HDF5存儲用于Minibatch培訓的圖像數據集
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb
使用輸入Pipeline從TFRecords文件中讀取數據
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb
使用隊列運行器直接從磁盤提供圖像
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb
使用TensorFlow的Dataset API
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb
訓練和預處理
保存和加載訓練模型 - 來自TensorFlow Checkpoint文件和NumPy NPZ Archives
TensorFlow 1:
https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb
參考鏈接:
https://github.com/rasbt/deeplearning-models
總結
以上是生活随笔為你收集整理的batchnorm pytorch_GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 工业机器人工具中心点标定的意义_新品发布
- 下一篇: 主动资金和主力资金的区别 主动资金和主力