仪表盘加载数据nan_6种数据格式对比,用Jupyter+pandas高效数据分析
編譯:劉早起(有刪改)
來源:towardsdatascience、GitHub等
在使用python進行數(shù)據(jù)分析時,Jupyter Notebook是一個非常強力的工具,在數(shù)據(jù)集不是很大的情況下,我們可以使用pandas輕松對txt或csv等純文本格式數(shù)據(jù)進行讀寫。
然而當數(shù)據(jù)集的維度或者體積很大時,將數(shù)據(jù)保存并加載回內(nèi)存的過程就會變慢,并且每次啟動Jupyter Notebook時都需要等待一段時間直到數(shù)據(jù)重新加載, 這樣csv格式或任何其他純文本格式數(shù)據(jù)都失去了吸引力。
本文將對pandas支持的多種格式數(shù)據(jù)在處理數(shù)據(jù)的不同方面進行比較,包含I/O速度、內(nèi)存消耗、磁盤占用空間等指標,試圖找出如何為我們的數(shù)據(jù)找到一個合適的格式的辦法!
——格式說明
現(xiàn)在對本文進行對比的幾種數(shù)據(jù)格式進行說明。
- CSV:最常用的數(shù)據(jù)格式
- Pickle:用于序列化和反序列化Python對象結(jié)構(gòu)
- MessagePack:類似于json,但是更小更塊
- HDF5:一種常見的跨平臺數(shù)據(jù)儲存文件
- Feather:一個快速、輕量級的存儲框架
- Parquet:Apache Hadoop的列式存儲格式
——指標說明
為了找到格式來存儲數(shù)據(jù),本文選擇以下指標進行對比。
- size_mb:帶有序列化數(shù)據(jù)幀的文件的大小
- save_time:將數(shù)據(jù)幀保存到磁盤所需的時間
- load_time:將先前轉(zhuǎn)儲的數(shù)據(jù)幀加載到內(nèi)存所需的時間
- save_ram_delta_mb:在數(shù)據(jù)幀保存過程中最大的內(nèi)存消耗增長
- load_ram_delta_mb:數(shù)據(jù)幀加載過程中最大的內(nèi)存消耗增長
注意,當我們使用有效壓縮的二進制數(shù)據(jù)格式(例如Parquet)時,最后兩個指標變得非常重要。它們可以幫助我們估算加載串行化數(shù)據(jù)所需的RAM數(shù)量,以及數(shù)據(jù)大小本身。我們將在下一部分中更詳細地討論這個問題。
——對比
現(xiàn)在開始對前文介紹的5種數(shù)據(jù)格式進行比較,為了更好地控制序列化的數(shù)據(jù)結(jié)構(gòu)和屬性我們將使用自己生成的數(shù)據(jù)集。
下面是生成測試數(shù)據(jù)的代碼,我們隨機生成具有數(shù)字和分類特征的數(shù)據(jù)集。數(shù)值特征取自標準正態(tài)分布。分類特征以基數(shù)為C的uuid4隨機字符串生成,其中2 <= C <= max_cat_size。
def?generate_dataset(n_rows,?num_count,?cat_count,?max_nan=0.1,?max_cat_size=100):????dataset,?types?=?{},?{}????????def?generate_categories():????????from?uuid?import?uuid4????????category_size?=?np.random.randint(2,?max_cat_size)????????return?[str(uuid4())?for?_?in?range(category_size)]????????for?col?in?range(num_count):????????name?=?f'n{col}'????????values?=?np.random.normal(0,?1,?n_rows)????????nan_cnt?=?np.random.randint(1,?int(max_nan*n_rows))????????index?=?np.random.choice(n_rows,?nan_cnt,?replace=False)????????values[index]?=?np.nan????????dataset[name]?=?values????????types[name]?=?'float32'????????????for?col?in?range(cat_count):????????name?=?f'c{col}'????????cats?=?generate_categories()????????values?=?np.array(np.random.choice(cats,?n_rows,?replace=True),?dtype=object)????????nan_cnt?=?np.random.randint(1,?int(max_nan*n_rows))????????index?=?np.random.choice(n_rows,?nan_cnt,?replace=False)????????values[index]?=?np.nan????????dataset[name]?=?values????????types[name]?=?'object'????????return?pd.DataFrame(dataset),?types現(xiàn)在我們以CSV文件保存和加載的性能作為基準。將五個隨機生成的具有百萬個觀測值的數(shù)據(jù)集轉(zhuǎn)儲到CSV中,然后讀回內(nèi)存以獲取平均指標。并且針對具有相同行數(shù)的20個隨機生成的數(shù)據(jù)集測試了每種二進制格式。
同時使用兩種方法進行對比:
- 1.將生成的分類變量保留為字符串
- 2.在執(zhí)行任何I/O之前將其轉(zhuǎn)換為pandas.Categorical數(shù)據(jù)類型
1.以字符串作為分類特征
下圖顯示了每種數(shù)據(jù)格式的平均I/O時間。這里有趣的發(fā)現(xiàn)是hdf的加載速度比csv更低,而其他二進制格式的性能明顯更好,而feather和parquet則表現(xiàn)的非常好
保存數(shù)據(jù)并從磁盤讀取數(shù)據(jù)時的內(nèi)存消耗如何?下一張圖片向我們展示了hdf的性能再次不那么好。但可以肯定的是,csv不需要太多額外的內(nèi)存來保存/加載純文本字符串,而feather和parquet則非常接近
最后,讓我們看一下文件大小的對比。這次parquet顯示出非常好的結(jié)果,考慮到這種格式是為有效存儲大量數(shù)據(jù)而開發(fā)的,也是理所當然
2.對特征進行轉(zhuǎn)換
在上一節(jié)中,我們沒有嘗試有效地存儲分類特征,而是使用純字符串,接下來我們使用專用的pandas.Categorical類型再次進行比較。
從上圖可以看到,與純文本csv相比,所有二進制格式都可以顯示其真強大功能,效率遠超過csv,因此我們將其刪除以更清楚地看到各種二進制格式之間的差異。
可以看到feather和pickle擁有最快的I/O速度,接下來該比較數(shù)據(jù)加載過程中的內(nèi)存消耗了。下面的條形圖顯示了我們之前提到的有關parquet格式的情況
為什么parquet內(nèi)存消耗這么高?因為只要在磁盤上占用一點空間,就需要額外的資源才能將數(shù)據(jù)解壓縮回數(shù)據(jù)幀。即使文件在持久性存儲磁盤上需要適度的容量,也可能無法將其加載到內(nèi)存中。
最后我們看下不同格式的文件大小比較。所有格式都顯示出良好的效果,除了hdf仍然需要比其他格式更多的空間。
結(jié)論
正如我們的上面的測試結(jié)果所示,feather格式似乎是在多個Jupyter之間存儲數(shù)據(jù)的理想選擇。它顯示出很高的I/O速度,不占用磁盤上過多的內(nèi)存,并且在裝回RAM時不需要任何拆包。
當然這種比較并不意味著我們應該在每種情況下都使用這種格式。例如,不希望將feather格式用作長期文件存儲。此外,當其他格式發(fā)揮最佳效果時,它并未考慮所有可能的情況。所以我們也需要根據(jù)具體情況進行選擇!
總結(jié)
以上是生活随笔為你收集整理的仪表盘加载数据nan_6种数据格式对比,用Jupyter+pandas高效数据分析的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 大学生创业贷款怎么办
- 下一篇: 关服了的手游怎么进去_如果手游彻底停服了