PCL:描述三维离散点的ROPS特征(Code)
生活随笔
收集整理的這篇文章主要介紹了
PCL:描述三维离散点的ROPS特征(Code)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
前言:
三維點云為三維歐式空間點的集合。對點云的形狀描述若使用局部特征,則可分為兩種:固定世界坐標系的局部描述和尋找局部主方向的局部描述,ROPS特征為尋找局部主方向的特征描述。
1.尋找主方向(對XYZ軸經過特定旋轉)LFR:
<1>.計算法線特征:這一步是非常耗計算量的,若達到可以接受的法線精度,此過程幾乎占據了 整個計算過程的50%;可選擇的方法有 使用空間樹索引建立近鄰域,對近鄰平面擬合,平面的參數方向既是法線一個方向。
<2>.進行多邊形重建:利用貪婪投影的方法進行三角形重建,這個事一個調參數的過程,沒有可以完全的方法。
參數有:
gp3.setSearchMethod (treeNor);
gp3.setSearchRadius (Gp3PolyParam.SearchRadius);// Set 最大搜索半徑
gp3.setMu (Gp3PolyParam.MuTypeValue);// Set typical values
gp3.setMaximumNearestNeighbors (Gp3PolyParam.MaximumNearestNeighbors);
gp3.setMaximumSurfaceAngle (Gp3PolyParam.MaximumSurfaceAngle); // 45 度
gp3.setMinimumAngle ( Gp3PolyParam.MinimumAngle); // 10 度
gp3.setMaximumAngle (Gp3PolyParam.MaximumAngle); // 120 度
gp3.setNormalConsistency (Gp3PolyParam.NormalConsistency);
<3>.計算整幅圖像的ROPS特征:
查找PCL官網的tutoriales:http://pointclouds.org/documentation/tutorials/rops_feature.php。
#include <pcl/features/rops_estimation.h>
#include <pcl/io/pcd_io.h>
int main (int argc, char** argv)
{
if (argc != 4)
return (-1);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)
return (-1);
pcl::PointIndicesPtr indices = boost::shared_ptr <pcl::PointIndices> (new pcl::PointIndices ());
std::ifstream indices_file;
indices_file.open (argv[2], std::ifstream::in);
for (std::string line; std::getline (indices_file, line);)
{
std::istringstream in (line);
unsigned int index = 0;
in >> index;
indices->indices.push_back (index - 1);
}
indices_file.close ();
std::vector <pcl::Vertices> triangles;
std::ifstream triangles_file;
triangles_file.open (argv[3], std::ifstream::in);
for (std::string line; std::getline (triangles_file, line);)
{
pcl::Vertices triangle;
std::istringstream in (line);
unsigned int vertex = 0;
in >> vertex;
triangle.vertices.push_back (vertex - 1);
in >> vertex;
triangle.vertices.push_back (vertex - 1);
in >> vertex;
triangle.vertices.push_back (vertex - 1);
triangles.push_back (triangle);
}
float support_radius = 0.0285f;
unsigned int number_of_partition_bins = 5;
unsigned int number_of_rotations = 3;
pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>);
search_method->setInputCloud (cloud);
pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator;
feature_estimator.setSearchMethod (search_method);
feature_estimator.setSearchSurface (cloud);
feature_estimator.setInputCloud (cloud);
feature_estimator.setIndices (indices);
feature_estimator.setTriangles (triangles);
feature_estimator.setRadiusSearch (support_radius);
feature_estimator.setNumberOfPartitionBins (number_of_partition_bins);
feature_estimator.setNumberOfRotations (number_of_rotations);
feature_estimator.setSupportRadius (support_radius);
pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ());
feature_estimator.compute (*histograms);
return (0);
}
總結
以上是生活随笔為你收集整理的PCL:描述三维离散点的ROPS特征(Code)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 横向滚动条的css样式
- 下一篇: 计算机会计的专业知识竞赛,会计知识大赛主