best single model of RSNA
對于[1]中的個單模型進行匯總:
?
| 用戶 | 模型 | 數據集像素 | LB得分 | 備注 |
| Tim Yee | EfficientNet B1 | 224x224 | 0.098 | ? |
| Tim Yee | EfficientNet B0 | 224x224 | 0.093 | ? |
| Kun Jiang | VGG19,epoch20 | 沒說 | 0.082 | ? |
| XingJian Lyu | EfficientNet B0 ? ? | 224x224 | 0.073 | I grouped on patient and used some tricks, though ? Solved it via grouping via patients. batch_size是48 ?使用一些技巧可以到達0.066 |
| Yifeng (Ethan) Zou? | EfficientNet B0 | 320x320 | 0.079 | With raw input from dcmread, random ShuffleSplit, no tta,(續) |
| Yifeng (Ethan) Zou? | EfficientNet B4 | 224x224 | 0.080 | (接上)I'm pretty sure that's subjective to many other factors. For .95/.05 split, default class weight it seems 4-6 epochs works well and then starts to overfit real bad real fast afterwards. |
| Yifeng (Ethan) Zou? | ResNet50 | 224x224 | 0.098 | ? |
| takuoko | Se_resnext50 | 224x224 | 0.082 | 他推薦了: https://www.kaggle.com/dcstang/see-like-a-radiologist-with-systematic-windowing |
| 4ui_iurz1 | EfficientNet B0? | 256x256 | 0.072 |
|
| Appian | se_resnext50_32x4d | 224x224 | 0.074 |
|
William Green | Resnet50 | 沒說 | 0.094 | w/o any augmentation or tta |
| hi | InceptionResnetv2 | 224x224 | 0.086 | ? |
Fernando Camargo | VGG19 | 224x224 | 0.073 | 20 epochs.? ?40min/epoch |
Salil Mishra | ? | ? | ? | 提到了一篇加速訓練的論文 |
Alimbekov Renat [dsmlkz] | ResNeXt 32x8d - | ? | 0.087 with | 50/50 % sampler |
Jayaram | EfficientNet B0 | 512x512 | 0.078 | Random split 95% train & 5% validation… trained for 10 epochs(目測過擬合) |
KeepLearning | inceptionV3 | 224x224 | 0.079 | ? |
| DrHB | EfficientNet B0 | 224x224 | 0.080 | CV: 1 Fold AUG: [zoom, rotate] TTA: No PRETRAINED: True EPOCH: 20 LR: 1e-3 |
akensert | EfficientNet B0 | 224x224 | 0.079 | ? |
| Ian Pan | EfficientNet B5 | 512x512 | 0.070 | 是上一次RSNA的金牌得主 100 epochs, 16,000 images per epoch About 60-65 hours. |
| nan | resnet34 | 256x256 | 0.078 | 第二個epoch雖然本地得分上升,但是lb上下降 |
Igor Krashenyi | Custom model | 512x512 | 0.069 | ? |
| OrKatz | inceptionv4 | ? | 0.078 | ? |
| Arijit Gupta | ResNeXt-101,32x16d | ? | 0.086 | ? |
Abhilash Awasthi | resnet34 | 512 x 512 | 0.084 | ? |
| Salil Mishra | Efficient Net B4 | 256x256 | ? | 10 epochs 256x256 - 0.113 3 epochs 256x256 - 0.107 |
| Joe England | EfficientNet B0 | 256x256? | 0.077 | Image augmentation included horizontal flip and rotation of up to 10 degrees Trained for 10 epochs using cyclical learning rate, max 0.009 |
| William Green | Resnet50 | 256x256 | 0.089 | ? |
| Yaroslav Isaienkov | ResNet50 | 224*224 | 0.108 | ? |
| Rajnish Chauhan | EfficientNet b2 | 224x224 | 0.107 |
|
smerllo | Inception | 224x224 | 0.091 | ? |
tta:Test Time Augmentation
#-------------------------------------------
統計情況:
0.072:efficientnet b0
0.073:efficientnet b0,vgg19
0.074:se_resnext50_32x4d
resnet50公認不行
0.077:efficientnet b0
0.078:efficientnet b0,resnet34,inceptionv4
0.079:efficientnet b0,inceptionV3
#-----------------------更新0.07以下的--------------------
Single-fold SE ResNext50, 512x512 raw HU image: lb 0.066 w/o tta
EfficientNet-B0 224x224 Public LB: 0.069 without TTA
?
efficientnet-b2?256x256 w/o 3 windowing preprocess publicLB: 0.069
?
?
?
?
Reference:
[1]https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/110221#latest-647044
總結
以上是生活随笔為你收集整理的best single model of RSNA的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: kaggle中安装lightgbm的gp
- 下一篇: RSNA待做事项