论文阅读2--《融合多因素的短时交通流预测研究》
1.問題的提出
現(xiàn)有的交通流預測研究大多為常態(tài)下的預測,而未考慮天氣、節(jié)假日等外部因素的影響。
2.交通流預測相關(guān)工作
(1)傳統(tǒng)的短時交通流研究方法:
卡爾曼濾波模型、歷史平均模型、時間序列模型、非參數(shù)回歸模型、混沌理論模型等。
缺點: 交通流受多種外部因素的影響,交通流數(shù)據(jù)具有隨機性和不確定性,傳統(tǒng)的模型普遍存在實時性差、預測精度不高的問題。
(2)組合模型的預測:
將兩種模型的優(yōu)點結(jié)合起來提高短時交通流的預測準確率。
a.卷積神經(jīng)網(wǎng)絡+支持回歸分類器:提高了準確率
但是未充分考慮外部因素對交通流預測的影響
b. 混沌理論+模擬退火算法:優(yōu)化了相關(guān)向量機的核心參數(shù)
但是沒有考慮交通流數(shù)據(jù)的隨機性
c. 通過異常值識別擴展了卡爾曼濾波,使其能對噪聲進行識別和過濾,但其對交通流特征挖掘不充分
(3)LSTM的加入
LSTM在特征提取上具有強大的魯棒性和靈活性,不僅能提取交通流的時序特征,還能將隨機外部因素納入考慮
深度雙向長短時記憶網(wǎng)絡模型:在時空特征提取上具有獨特的優(yōu)勢,卻忽略了相鄰路段交通流的影響
LSTM+注意力機制:提高了交通流預測精度,但考慮因素單一
本文結(jié)合天氣、節(jié)假日等因素對交通流特征進行分析,選擇長短時記憶網(wǎng)絡(LSTM)并引入注意力機制對短時交通流進行預測
3.相關(guān)理論
(1)循環(huán)神經(jīng)網(wǎng)絡(RNN)
RNN可以隨著時間的變化動態(tài)的調(diào)整自身的網(wǎng)絡狀態(tài)不斷進行循環(huán)傳遞,并且還可以接受廣泛的序列信息作為輸入。
但是RNN會隨著循環(huán)神經(jīng)網(wǎng)絡模型的規(guī)模的增大,對序列數(shù)據(jù)的記憶能力會下降,當序列信號在神經(jīng)網(wǎng)絡經(jīng)過多次傳遞后,會使網(wǎng)絡喪失鏈接先前信息的能力,從而引起梯度消失或者梯度爆炸。
為了保存長期序列信息,減少隨著時間傳播而衰減的信息,于是LSTM誕生了。
(2)長短時記憶網(wǎng)絡(LSTM)
LSTM引入門控機制來控制信息傳遞的路徑,門的作用是允許LSTM的記憶單元存儲和訪問序列信息,從而減少梯度消失問題。有輸入門、遺忘門和輸出門。
輸入門:如果輸入門保持關(guān)閉(即激活函數(shù)接近0),則新的輸入不會進入網(wǎng)絡,網(wǎng)絡中的記憶單元會一直保持開始的激活狀態(tài)。通過對輸入門的開關(guān)控制,可以控制循環(huán)神經(jīng)網(wǎng)絡模型什么時候接受新的數(shù)據(jù)、什么時候拒絕新的數(shù)據(jù)接入,于是梯度信息就隨時間的傳遞而被保留下來了。
遺忘門:用于控制記憶單元是否記住或丟棄之前的狀態(tài)
輸出門:決定記憶單元中哪些信息允許被輸出
(3)注意力機制
通過模擬人腦注意力的特點,以概率分布的思想捕捉關(guān)鍵信息,注意力機制能夠?qū)W⒂诰植啃畔?#xff0c;對一些不必要的信息忽略不計。
在交通流預測中,考慮到交通流量會受到天氣、節(jié)假日等各種外部因素的影響,這些外部因素對預測時間交通流量的影響程度不同,因此本文引入注意力機制層來自動捕獲不同輸入特征,以概率分布的思想對重要的信息分布足夠的權(quán)重,以此來提升交通流的預測精度。
4.本文模型
融合多因素的短時交通里預測模型
(1)交通流特性
a.周期性:具有一定的規(guī)律,周一到周五期間,有明顯的上下班高峰,相較于周六周日交通流波動較大,周六、周日的交通狀態(tài)則較為平緩。
b.時空特性:當前t時刻的交通流不僅受前一段時間交通流量的影響,還受當前時刻不同路段交通流量的影響。
c.受天氣的影響:天氣因素影響著人們的出行率,暴雨、暴雪、沙塵暴等惡劣天氣期間,道路情況不確定,路面由于惡劣天氣造成結(jié)冰、能見度低等,這時交通流量會驟減;中雨、中雪的情況下,會影響一部分交通流量;小雨、小雪對交通流量的影響較小。本文根據(jù)天氣情況將天氣狀態(tài)量化如下:
d.節(jié)假日期間,交通流數(shù)據(jù)具有明顯的波動。本文將節(jié)假日狀態(tài)量化如下:
(2)數(shù)據(jù)集的構(gòu)造
將采集到的原始數(shù)據(jù)(交通流數(shù)據(jù)和天氣數(shù)據(jù))進行預處理,包括數(shù)據(jù)缺失值的補全、去噪和標準化。將預處理后的數(shù)據(jù)構(gòu)造數(shù)據(jù)集,作為訓練模型的輸入,模型的參數(shù)設置如表1所示。
式中,w表示不同天氣狀態(tài)下的數(shù)據(jù),1表示嚴重,2表示重度,3表示輕度,4表示無影響,h表示是否為節(jié)假日,0表示工作日,1表示節(jié)假日
(3)交通流數(shù)據(jù)空間特征的提取
X(ts)表示第s個監(jiān)測點在t時刻的交通流量,將原始一維的交通流數(shù)據(jù)轉(zhuǎn)化為二維的交通流量矩陣記為F,則有
那么S個監(jiān)測點T個時刻的交通流量輸入矩陣為:
利用卷積神經(jīng)網(wǎng)絡(CNN)根據(jù)歷史數(shù)據(jù)提取交通流的空間特性,本文采用2層的交通卷積網(wǎng)絡,使用卷積層來提取交通流數(shù)據(jù)的局部特征,為了保留交通流原始數(shù)據(jù)的真實性,本文僅用CNN的卷積層對數(shù)據(jù)進行特征提取,不用池化層壓縮數(shù)據(jù),卷積核的大小設置為3
(4)結(jié)合注意力機制的短時交通流預測
(Attention-based CNN-LSTM,CLA)
CLA有四層結(jié)構(gòu)。
第一層:利用卷積神經(jīng)網(wǎng)絡(CNN)提取交通流的空間特性
第二層:利用長短時記憶網(wǎng)絡(LSTM)提取交通流的時間特性
第三層:將提取到的時空特性結(jié)合外部因素引入注意力機制
第四層:綜合交通流量的特征分析,使用全連接層進行預測
5.實驗結(jié)果與分析
(1)數(shù)據(jù)集:
交通流數(shù)據(jù):采用加拿大Whitemud Drive 高速公路開放數(shù)據(jù)進行實力分析
天氣數(shù)據(jù):本文選取的數(shù)據(jù)來源于埃德蒙頓城市氣象觀測中心,數(shù)據(jù)記錄了每日氣溫、天氣狀況、降雨量、降雪量、風速等
(2)評價指標:
采取均方根誤差(RMSE)
平均絕對誤差(MAE)
平均絕對百分比誤差(MAPE)
當預測值與真實值完全吻合時,RMSE、MAE、MAPE的值為0,稱之為完美模型,值越大,則表示預測值與真實值的誤差越大。
(3)實驗結(jié)果:
變體模型預測結(jié)果對比分析
選取了未引入注意力機制的CLA-ATTN模型及 未引入多因素的CLA-MFACTOR模型進行對比
結(jié)論
本文使用公開數(shù)據(jù)集,融合多種外部因素并引入注意力機制,對每個影響交通流量潛在因素或特征的重要程度進行區(qū)分,并與傳統(tǒng)及變體模型的預測結(jié)果進行對比,發(fā)現(xiàn)本文所提出的模型與傳統(tǒng)模型相比具有比較好的預測效果。
展望
雖然本文所提出的模型提高了預測準確率,但模型在引入注意力機制分配權(quán)重時,需要計算每一個輸入特征的權(quán)重,會消耗大量的計算資源,未來的研究工作應進一步考慮這些因素以提高交通流的預測效率。
總結(jié)
以上是生活随笔為你收集整理的论文阅读2--《融合多因素的短时交通流预测研究》的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 因子分析spss怎么做 spss因子分析
- 下一篇: Ubuntu中安装FastDFS