【托马斯微积分】(12版)阅读笔记2:极限
一.definition and theorem
1. average rate of change
??The average rate of change of y=f(x) with respect to x over the interval [x1,x2] is
ΔyΔx=f(x2)?f(x1)x2?x1=f(x1+h)?f(x1)h,h≠0.\frac{\Delta y}{\Delta x}=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{f(x_1+h)-f(x_1)}{h},h\neq0.ΔxΔy?=x2??x1?f(x2?)?f(x1?)?=hf(x1?+h)?f(x1?)?,h?=0.
2.THEOREM 1—Limit Laws
??If L,M,c,and k are real number and
lim?x→cf(x)=L\lim_{x\rightarrow c}f(x)=Lx→clim?f(x)=L
??????????and
lim?x→cg(x)=M\lim_{x\rightarrow c}g(x)=Mx→clim?g(x)=M
??????????then
3.THEOREM 2—Limits of Polynomials
4.THEOREM 3—Limits of Rational Functions
5.THEOREM 4—The Sandwich Theorem
??Suppose that g(x)≤f(x)≤h(x)g(x) \leq f(x)\leq h(x)g(x)≤f(x)≤h(x) for all x in some open interval containing c, except possibly at x = c itself. Suppose also that lim?x→cg(x)=lim?x→ch(x)=L\lim_{ x\rightarrow c }g(x)=\lim_{x\rightarrow c}h(x)=Lx→clim?g(x)=x→clim?h(x)=L
??????????then
lim?x→cf(x)=L\lim_{ x\rightarrow c }f(x)=Lx→clim?f(x)=L
5.THEOREM 5
??If f(x)≤g(x)f(x)\leq g(x)f(x)≤g(x)for all x in some open interval containing c,except possibly at x = c itself, and the limits of ? and g both exist as x approaches c,thenlim?x→cf(x)≤lim?x→cg(x)\lim_{x\rightarrow c}f(x)\leq \lim_{x\rightarrow c}g(x)x→clim?f(x)≤x→clim?g(x)
總結
以上是生活随笔為你收集整理的【托马斯微积分】(12版)阅读笔记2:极限的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: c语言 java append_C++中
- 下一篇: 嵌入式数据库sqlite在ARM上的的移