matplotlib动画演示:细胞自动机-探索生命起源
📢博客主頁:https://blog.csdn.net/as604049322
📢歡迎點贊 👍 收藏 ?留言 📝 歡迎討論!
📢本文由 小小明-代碼實體 原創,首發于 CSDN🙉
維基百科上有個有意思的話題叫細胞自動機:https://en.wikipedia.org/wiki/Cellular_automaton
在20世紀70年代,一種名為生命游戲的二維細胞自動機變得廣為人知,特別是在早期的計算機界。由約翰 · 康威發明,馬丁 · 加德納在《科學美國人》的一篇文章中推廣,其規則如下:
總結就是:任何活細胞在有兩到三個活鄰居時能活到下一代,否則死亡。任何有三個活鄰居的死細胞會變成活細胞,表示繁殖。
在Conway’s Game of Life中,展示了幾種初始狀態:
下面我們用python來模擬,首先嘗試表示Beacon:
import numpy as np import matplotlib.pyplot as pltuniverse = np.zeros((6, 6), "byte") # Beacon universe[1:3, 1:3] = 1 universe[3:5, 3:5] = 1 print(universe) im = plt.imshow(universe, cmap="binary") [[0 0 0 0 0 0][0 1 1 0 0 0][0 1 1 0 0 0][0 0 0 1 1 0][0 0 0 1 1 0][0 0 0 0 0 0]]可以看到已經成功的打印出了Beacon的形狀,下面我們繼續編寫細胞自動機的演化規則:
def cellular_auto(universe):universe_new = universe.copy()h, w = universe.shapefor y in range(h):for x in range(w):neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]# 任何有三個活鄰居的死細胞都變成了活細胞,繁殖一樣。if universe[x, y] == 0 and neighbor_num == 3:universe_new[x, y] = 1# 任何有兩到三個活鄰居的活細胞都能活到下一代,否則就會死亡。if universe[x, y] == 1 and neighbor_num not in (2, 3):universe_new[x, y] = 0return universe_newuniverse = cellular_auto(universe) print(universe) plt.axis("off") im = plt.imshow(universe, cmap="binary") [[0 0 0 0 0 0][0 1 1 0 0 0][0 1 0 0 0 0][0 0 0 0 1 0][0 0 0 1 1 0][0 0 0 0 0 0]]ArtistAnimation動畫
基于此我們可以制作matplotlib的動畫,下面直接將Blinker、Toad、Beacon都放上去:
from matplotlib import animation import numpy as np import matplotlib.pyplot as plt %matplotlib notebookdef cellular_auto(universe):universe_new = universe.copy()h, w = universe.shapefor y in range(h):for x in range(w):neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]# 任何有三個活鄰居的死細胞都變成了活細胞,繁殖一樣。if universe[x, y] == 0 and neighbor_num == 3:universe_new[x, y] = 1# 任何有兩到三個活鄰居的活細胞都能活到下一代,否則就會死亡。if universe[x, y] == 1 and neighbor_num not in (2, 3):universe_new[x, y] = 0return universe_newuniverse = np.zeros((12, 12), "byte") # Blinker universe[2, 1:4] = 1 # Beacon universe[4:6, 5:7] = 1 universe[6:8, 7:9] = 1 # Toad universe[8, 2:5] = 1 universe[9, 1:4] = 1 fig = plt.figure() plt.axis("off") im = plt.imshow(universe, cmap="binary") frame = [] for _ in range(2):frame.append((plt.imshow(universe, cmap="binary"),))universe = cellular_auto(universe) animation.ArtistAnimation(fig, frame, interval=500, blit=True)然后我們畫一下Pulsar:
# Pulsar universe = np.zeros((17, 17), "byte") universe[[2, 7, 9, 14], 4:7] = 1 universe[[2, 7, 9, 14], 10:13] = 1 universe[4:7, [2, 7, 9, 14]] = 1 universe[10:13, [2, 7, 9, 14]] = 1 fig = plt.figure() plt.axis("off") im = plt.imshow(universe, cmap="binary") frame = [] for _ in range(3):frame.append((plt.imshow(universe, cmap="binary"),))universe = cellular_auto(universe) animation.ArtistAnimation(fig, frame, interval=500, blit=True)FuncAnimation動畫
另一種創建matplotlib動畫的方法是使用FuncAnimation,完整代碼:
from matplotlib import animation import numpy as np import matplotlib.pyplot as plt from IPython.display import HTML # %matplotlib notebookdef cellular_auto(universe):universe_new = universe.copy()h, w = universe.shapefor y in range(h):for x in range(w):neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]# 任何有三個活鄰居的死細胞都變成了活細胞,繁殖一樣。if universe[x, y] == 0 and neighbor_num == 3:universe_new[x, y] = 1# 任何有兩到三個活鄰居的活細胞都能活到下一代,否則就會死亡。if universe[x, y] == 1 and neighbor_num not in (2, 3):universe_new[x, y] = 0return universe_newdef update(i=0):global universeim.set_data(universe)universe = cellular_auto(universe)return im,# Pulsar universe = np.zeros((17, 17), "byte") universe[[2, 7, 9, 14], 4:7] = 1 universe[[2, 7, 9, 14], 10:13] = 1 universe[4:7, [2, 7, 9, 14]] = 1 universe[10:13, [2, 7, 9, 14]] = 1 fig = plt.figure() plt.axis("off") im = plt.imshow(universe, cmap="binary") plt.show() anim = animation.FuncAnimation(fig, update, frames=3, interval=500, blit=True) HTML(anim.to_jshtml())這種動畫生成速度較慢,好處是可以導出html文件:
with open("out.html", "w") as f:f.write(anim.to_jshtml())還可以保存MP4視頻:
anim.save("out.mp4")或gif動畫:
anim.save("out.gif")注意:保存MP4視頻或GIF動畫,需要事先將ffmpeg配置到環境變量中
ffmpeg下載地址:https://pan.baidu.com/s/1Cfu198zvz57BCy5yR4e0qA?pwd=a729
隨機生命游戲
接下來,我們創建一個50*50的二維生命棋盤,并選取其中1500個位置作為初始活細胞點,我們看看最終生成的動畫如何。
完整代碼如下:
from matplotlib import animation import numpy as np import matplotlib.pyplot as plt %matplotlib notebookdef cellular_auto(universe):universe_new = universe.copy()h, w = universe.shapefor y in range(1, h-1):for x in range(1, w-1):neighbor_num = universe[x-1:x+2, y-1:y+2].sum()-universe[x, y]# 任何有三個活鄰居的死細胞都變成了活細胞,繁殖一樣。if universe[x, y] == 0 and neighbor_num == 3:universe_new[x, y] = 1# 任何有兩到三個活鄰居的活細胞都能活到下一代,否則就會死亡。if universe[x, y] == 1 and neighbor_num not in (2, 3):universe_new[x, y] = 0# 邊緣置零universe[[0, -1]] = 0universe[:, [0, -1]] = 0return universe_newboardsize, pad = 50, 2 universe = np.zeros((boardsize+pad, boardsize+pad), "byte") # 隨機選取1500個點作為初始活細胞 for i in range(1500):x, y = np.random.randint(1, boardsize+1, 2)universe[y, x] = 1fig = plt.figure() plt.axis("off") im = plt.imshow(universe, cmap="binary") frame = [] for _ in range(200):frame.append((plt.imshow(universe, cmap="binary"),))universe = cellular_auto(universe) animation.ArtistAnimation(fig, frame, interval=50, blit=True)總結
以上是生活随笔為你收集整理的matplotlib动画演示:细胞自动机-探索生命起源的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 集群渲染和渲染农场是什么意思?跟云渲染有
- 下一篇: 掌握rm命令