当当网图书爬虫与数据分析
生活随笔
收集整理的這篇文章主要介紹了
当当网图书爬虫与数据分析
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
文章目錄
- 爬蟲篇
- 繪制圖書圖片墻
- 數據分析篇
爬蟲篇
''' Function:當當網圖書爬蟲 ''' import time import pickle import random import requests from bs4 import BeautifulSoupheaders = {'Upgrade-Insecure-Requests': '1','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36','Accept-Encoding': 'gzip, deflate','Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8','Cache-Control': 'no-cache','Connection': 'keep-alive','Host': 'search.dangdang.com' }'''解析, 提取需要的數據''' def parseHtml(html):data = {}soup = BeautifulSoup(html, 'lxml')conshoplist = soup.find_all('div', {'class': 'con shoplist'})[0]for each in conshoplist.find_all('li'):# 書名bookname = each.find_all('a')[0].get('title').strip(' ')# 書圖img_src = each.find_all('a')[0].img.get('data-original')if img_src is None:img_src = each.find_all('a')[0].img.get('src')img_src = img_src.strip(' ')# 價格price = float(each.find_all('p', {'class': 'price'})[0].span.text[1:])# 簡介detail = each.find_all('p', {'class': 'detail'})[0].text# 評分stars = float(each.find_all('p', {'class': 'search_star_line'})[0].span.span.get('style').split(': ')[-1].strip('%;')) / 20# 評論數量num_comments = float(each.find_all('p', {'class': 'search_star_line'})[0].a.text[:-3])data[bookname] = [img_src, price, detail, stars, num_comments]return data'''主函數''' def main(keyword):url = 'http://search.dangdang.com/?key={}&act=input&page_index={}'results = {}num_page = 0while True:num_page += 1print('[INFO]: Start to get the data of page%d...' % num_page)page_url = url.format(keyword, num_page)res = requests.get(page_url, headers=headers)if '抱歉,沒有找到與“%s”相關的商品,建議適當減少篩選條件' % keyword in res.text:breakpage_data = parseHtml(res.text)results.update(page_data)time.sleep(random.random() + 0.5)with open('%s_%d.pkl' % (keyword, num_page-1), 'wb') as f:pickle.dump(results, f)return resultsif __name__ == '__main__':main('python')繪制圖書圖片墻
思路:
1)先利用爬取當當網圖書的圖片ur
2)批量爬取圖片
3)繪制圖片墻
圖片墻:
數據分析篇
''' import os import jieba import pickle from pyecharts import Bar from pyecharts import Pie from pyecharts import Funnel from wordcloud import WordCloud'''柱狀圖(2維)''' def drawBar(title, data, savepath='./results'):if not os.path.exists(savepath):os.mkdir(savepath)bar = Bar(title, title_pos='center')#bar.use_theme('vintage')attrs = [i for i, j in data.items()]values = [j for i, j in data.items()]bar.add('', attrs, values, xaxis_rotate=15, yaxis_rotate=30)bar.render(os.path.join(savepath, '%s.html' % title))'''餅圖''' def drawPie(title, data, savepath='./results'):if not os.path.exists(savepath):os.mkdir(savepath)pie = Pie(title, title_pos='center')#pie.use_theme('westeros')attrs = [i for i, j in data.items()]values = [j for i, j in data.items()]pie.add('', attrs, values, is_label_show=True,legend_orient="vertical", #標簽成列legend_pos="left",# #標簽在左radius=[30, 75],rosetype="area" #寬度屬性隨值大小變化)pie.render(os.path.join(savepath, '%s.html' % title))'''漏斗圖''' def drawFunnel(title, data, savepath='./results'):if not os.path.exists(savepath):os.mkdir(savepath)funnel = Funnel(title, title_pos='center')#funnel.use_theme('chalk')attrs = [i for i, j in data.items()]values = [j for i, j in data.items()]funnel.add("", attrs, values, is_label_show=True,label_pos="inside",#顯示標簽在圖像中label_text_color="#fff",funnel_gap=5,legend_pos="left",legend_orient="vertical" #標簽成列)funnel.render(os.path.join(savepath, '%s.html' % title))'''統計詞頻''' def statistics(texts, stopwords):words_dict = {}for text in texts:temp = jieba.cut(text)for t in temp:if t in stopwords or t == 'unknow':continueif t in words_dict.keys():words_dict[t] += 1else:words_dict[t] = 1return words_dict'''詞云''' def drawWordCloud(words, title, savepath='./results'):if not os.path.exists(savepath):os.mkdir(savepath)wc = WordCloud( background_color='white', max_words=2000, width=1920, height=1080, margin=5)wc.generate_from_frequencies(words)wc.to_file(os.path.join(savepath, title+'.png'))if __name__ == '__main__':with open('python_61.pkl', 'rb') as f:data = pickle.load(f)# 價格分布results = {}prices = []price_max = ['', 0]for key, value in data.items():price = value[1]if price_max[1] < price:price_max = [key, price]prices.append(price)results['小于50元'] = sum(i < 50 for i in prices)results['50-100元'] = sum((i < 100 and i >= 50) for i in prices)results['100-200元'] = sum((i < 200 and i >= 100) for i in prices)results['200-300元'] = sum((i < 300 and i >= 200) for i in prices)results['300-400元'] = sum((i < 400 and i >= 300) for i in prices)results['400元以上'] = sum(i >= 400 for i in prices)drawPie('python相關圖書的價格分布', results)print('價格最高的圖書為: %s, 目前單價為: %f' % (price_max[0], price_max[1]))# 評分分布results = {}stars = []for key, value in data.items():star = value[3] if value[3] > 0 else '暫無評分'stars.append(str(star))for each in sorted(set(stars)):results[each] = stars.count(each)drawBar('python相關圖書評分分布', results)# 評論數量results = {}comments_num = []top6 = {}for key, value in data.items():num = int(value[-1])comments_num.append(num)top6[key.split('【')[0].split('(')[0].split('(')[0].split(' ')[0].split(':')[0]] = numresults['0評論'] = sum(i == 0 for i in comments_num)results['0-100評論'] = sum((i > 0 and i <= 100) for i in comments_num)results['100-1000評論'] = sum((i > 100 and i <= 1000) for i in comments_num)results['1000-5000評論'] = sum((i > 1000 and i <= 5000) for i in comments_num)results['5000評論以上'] = sum(i > 5000 for i in comments_num)drawFunnel('python相關圖書評論數量分布', results)top6 = dict(sorted(top6.items(), key=lambda item: item[1])[-6:])drawBar('python相關圖書評論數量TOP6', top6)# 詞云stopwords = open('./stopwords.txt', 'r', encoding='utf-8').read().split('\n')[:-1]texts = [j[2] for i, j in data.items()]words_dict = statistics(texts, stopwords)drawWordCloud(words_dict, 'python相關圖書簡介詞云', savepath='./results')圖片展示:
評論詞云:
全部代碼與數據放在Github上:
https://github.com/why19970628/Python_Crawler/tree/master/DangDang_Books
總結
以上是生活随笔為你收集整理的当当网图书爬虫与数据分析的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Solidworks CAM入门教程,简
- 下一篇: 菊安酱的机器学习实战