蒙特卡洛树
蒙特卡洛樹
基本概念:
蒙特卡洛樹搜索又稱隨機抽樣或統計試驗方法,屬于計算數學的一個分支,它是在上世紀四十年代中期為了適應當時原子能事業的發展而發展起來的。傳統的經驗方法由于不能逼近真實的物理過程,很難得到滿意的結果,而蒙特卡洛樹搜索方法由于能夠真實地模擬實際物理過程,故解決問題與實際非常符合,可以得到很圓滿的結果。這也是以概率和統計理論方法為基礎的一種計算方法,是使用隨機數(或更常見的偽隨機數)來解決很多計算問題的方法。將所求解的問題同一定的概率模型相聯系,用電子計算機實現統計模擬或抽樣,以獲得問題的近似解。
基本原理思想:
當所要求解的問題是某種事件出現的概率,或者是某個隨機變量的期望值時,它們可以通過某種“試驗”的方法,得到這種事件出現的頻率,或者這個隨機變數的平均值,并用它們作為問題的解。這就是蒙特卡羅方法的基本思想。蒙特卡羅方法通過抓住事物運動的幾何數量和幾何特征,利用數學方法來加以模擬,即進行一種數字模擬實驗。它是以一個概率模型為基礎,按照這個模型所描繪的過程,通過模擬實驗的結果,作為問題的近似解。可以把蒙特卡羅解題歸結為三個主要步驟:構造或描述概率過程;實現從已知概率分布抽樣;建立各種估計量。
解題步驟:
1. 構造或描述概率過程
對于本身就具有隨機性質的問題,如粒子輸運問題,主要是正確描述和模擬這個概率過程,對于本來不是隨機性質的確定性問題,比如計算定積分,就必須事先構造一個人為的概率過程,它的某些參量正好是所要求問題的解。即要將不具有隨機性質的問題轉化為隨機性質的問題。
2.實現從已知概率分布抽樣
構造了概率模型以后,由于各種概率模型都可以看作是由各種各樣的概率分布構成的,因此產生已知概率分布的隨機變量(或隨機向量),就成為實現蒙特卡羅方法模擬實驗的基本手段,這也是蒙特卡羅方法被稱為隨機抽樣的原因。最簡單、最基本、最重要的一個概率分布是(0,1)上的均勻分布(或稱矩形分布)。隨機數就是具有這種均勻分布的隨機變量。隨機數序列就是具有這種分布的總體的一個簡單子樣,也就是一個具有這種分布的相互獨立的隨機變數序列。產生隨機數的問題,就是從這個分布的抽樣問題。在計算機上,可以用物理方法產生隨機數,但價格昂貴,不能重復,使用不便。另一種方法是用數學遞推公式產生。這樣產生的序列,與真正的隨機數序列不同,所以稱為偽隨機數,或偽隨機數序列。不過,經過多種統計檢驗表明,它與真正的隨機數,或隨機數序列具有相近的性質,因此可把它作為真正的隨機數來使用。由已知分布隨機抽樣有各種方法,與從(0,1)上均勻分布抽樣不同,這些方法都是借助于隨機序列來實現的,也就是說,都是以產生隨機數為前提的。由此可見,隨機數是我們實現蒙特卡洛樹搜索的基本工具。
3.建立各種估計量
一般說來,構造了概率模型并能從中抽樣后,即實現模擬實驗后,我們就要確定一個隨機變量,作為所要求的問題的解,我們稱它為無偏估計。建立各種估計量,相當于對模擬實驗的結果進行考察和登記,從中得到問題的解。
應用:
蒙特卡洛樹搜索在金融工程學,宏觀經濟學,生物醫學,計算物理學(如粒子輸運計算、量子熱力學計算、空氣動力學計算)等領域也應用廣泛。
計算機技術的發展,使得蒙特卡洛樹搜索在最近10年得到快速的普及。現代的蒙特卡洛樹搜索,已經不必親自動手做實驗,而是借助計算機的高速運轉能力,使得原本費時費力的實驗過程,變成了快速和輕而易舉的事情。它不但用于解決許多復雜的科學方面的問題,也被項目管理人員經常使用。
優點:
借助計算機技術,蒙特卡洛樹搜索實現了兩大優點:
一是簡單,省卻了繁復的數學報導和演算過程,使得一般人也能夠理解和掌握;
二是快速。簡單和快速,是蒙特卡羅方法在現代項目管理中獲得應用的技術基礎。
總結
- 上一篇: Dr.com哆点客户端本地密码查看
- 下一篇: 遥感图像入门