久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > ChatGpt >内容正文

ChatGpt

Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021

發(fā)布時(shí)間:2024/1/8 ChatGpt 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

轉(zhuǎn)載自微信公眾號(hào)
原文鏈接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486049&idx=1&sn=1d98375dcbb9d0d68e8733f2dd0a2d40&chksm=cf51b898f826318ead24e414144235cfd516af4abb71190aeca42b1082bd606df6973eb963f0#rd

Open AI 自監(jiān)督學(xué)習(xí)筆記


文章目錄

    • Open AI 自監(jiān)督學(xué)習(xí)筆記
      • Outline
      • Introduction
        • What is self-supervised learning?
        • What's Possible with Self-Supervised Learning?
      • Early Work
        • Early Work: Connecting the Dots
        • Restricted Boltzmann Machines
        • Autoencoder: Self-Supervised Learning for Vision in Early Days
        • Word2Vec: Self-Supervised Learning for Language
        • Autoregressive Modeling
        • Siamese Networks
        • Multiple Instance Learning & Metric Learning
      • Methods
        • Methods for Framing Self-Supervised Learning Tasks
        • Self-Prediction
        • Self-prediction: Autoregressive Generation
        • Self-Prediction: Masked Generation
        • Self-Prediction: Innate Relationship Prediction
        • Self-Prediction: Hybrid Self-Prediction Models
        • Contrastive Learning
        • Contrastive Learning: Inter-Sample Classification
          • Loss function 1: Contrastive loss
          • Loss function 2: Triplet loss
          • Loss function 3: N-pair loss
          • Loss function 4: Lifted structured loss
          • Loss function 5: Noise Contrastive Estimation (NCE)
          • Loss function 6: InfoNCE
          • Loss function 7: Soft-Nearest Neighbors Loss
        • Contrastive Learning: Feature Clustering
        • Contrastive Learning: Multiview Coding
        • Contrastive Learning between Modalities
      • Pretext tasks
        • Recap: Pretext Tasks
        • Pretext Tasks: Taxonomy
        • Image / Vision Pretext Tasks
          • Image Pretext Tasks: Varizational AutoEncoders
          • Image Pretext Tasks: Generative Adversial Networks
          • Vision Pretext Tasks: Autoregressive Image Generation
          • Vision Pretext Tasks: Diffusion Model
          • Vision Pretext Tasks: Masked Prediction
          • Vision Pretext Tasks: Colorization and More
          • Vision Pretext Tasks: Innate Relationship Prediction
          • Contrastive Predictive Coding and InfoNCE
          • Vision Pretext Tasks: Inter-Sample Classification
          • Vision Pretext Tasks: Contrastive Learning
          • Vision Pretext Tasks: Data Augmentation and Multiple Views
          • Vision Pretext Tasks: Inter-Sample Classification
            • MoCo
            • SimCLR
            • Barlow Twins
          • Vision Pretext Tasks: Non-Contrastive Siamese Networks
          • Vision Pretext Tasks: Feature Clustering with K-Means
          • Vision Pretext Tasks: Feature Clustering with Sinkhorm-Knopp
          • Vision Pretext Tasks: Feature Clustering to improve SSL
          • Vision Pretext Tasks: Nearest-Neighbor
          • Vision Pretext Tasks: Combining with Supervised Loss
        • Video Pretext Tasks
          • Video Pretext Tasks: Innate Relationship Prediction
          • Video Pretext Tasks: Optical Flow
          • Video Pretext Tasks: Sequence Ordering
          • Video Pretext Tasks: COlorization
          • Video Pretext Tasks: Contrastive Multi-View Learning
          • Video Pretext Task: Autoregressive Generation
        • Audio Pretext Tasks
          • Audio Pretext Tasks: Contrastive Learning
          • Audio Pretext Task: Masked Languagee Modeling for ASR
        • Multimodal Pretext Tasks
        • Language Pretext Tasks
          • Language Pretext Tasks: Generative Language Modeling
          • Language Pretext Tasks: Sentence Embedding
      • Training Techniques
        • Techniques: Data augmentation
          • Techniques: Data augmentation -- Image Augmentation
          • Techniques: Data augmentation -- Text Augmentation
        • Hard Negative Mining
          • What is "hard negative mining"
          • Explicit hard negative mining
          • Implicit hard negative mining
      • Theories
        • Contrastive learning captures shared information betweem views
        • The InfoMin Principle
        • Alignment and Uniformity on the Hypersphere
        • Dimensional Collapse
        • Provable Guarantees for Contrastive Learning
      • Feature directions
        • Future Directions


Video: https://www.youtube.com/watch?v=7l6fttRJzeU
Slides: https://nips.cc/media/neurips-2021/Slides/21895.pdf

Self-Supervised Learning
Self-Prediction and Contrastive Learning

  • Self-Supervised Learning
    • a popular paradigm of representation learning

Outline

  • Introduction: motivation, basic concepts, examples
  • Early Work: Look into connection with old methods
  • Methods
    • Self-prediction
    • Contrastive Learning
    • (for each subsection, present the framework and categorization)
  • Pretext tasks: a wide range of literature review
  • Techniques: improve training efficiency

Introduction

What is self-supervised learning and why we need it?

What is self-supervised learning?

  • Self-supervised learning (SSL):
    • a special type of representation learning that enables learning good data representation from unlablled dataset
  • Motivation :
    • the idea of constructing supervised learning tasks out of unsupervised datasets

    • Why?

      ? Data labeling is expensive and thus high-quality dataset is limited

      ? Learning good representation makes it easier to transfer useful information to a variety of downstream tasks ? \Rightarrow ? e.g. Few-shot learning / Zero-shot transfer to new tasks

Self-supervised learning tasks are also known as pretext tasks

What’s Possible with Self-Supervised Learning?

  • Video Colorization (Vondrick et al 2018)

    • a self-supervised learning method

    • resulting in a rich representation

    • can be used for video segmentation + unlabelled visual region tracking, without extra fine-tuning

    • just label the first frame

  • Zero-shot CLIP (Radford et al. 2021)

    • Despite of not training on supervised labels

    • Zero-shot CLIP classifier achieve great performance on challenging image-to-text classification tasks

Early Work

Precursors 先驅(qū)者 to recent self-supervised approaches

Early Work: Connecting the Dots

Some ideas:

  • Restricted Boltzmann Machines

  • Autoencoders

  • Word2Vec

  • Autogressive Modeling

  • Siamese networks

  • Multiple Instance / Metric Learning

Restricted Boltzmann Machines

  • RBM:
    • a special case of markov random field

    • consisting of visible units and hidden units

    • has connections between any pair across visible and hidden units, but not within each group

Autoencoder: Self-Supervised Learning for Vision in Early Days

  • Autoencoder: a precursor to the modren self-supervised approaches
    • Such as Denoising Autoencoder
  • Has inspired many self-learning approaches in later years
    • such as masked language model (e.g. BERT), MAE

Word2Vec: Self-Supervised Learning for Language

  • Word Embeddings to map words to vectors
    • extract the feature of words
  • idea:
    • the sum of neighboring word embedding is predictive of the word in the middle

  • An interesting phenomenon resulting from word2Vec:
    • you can observe linear substructures in the embedding space where the lines connecting comparable concepts such as the corresponding masculine and feminine words appear in roughly parallel lines

Autoregressive Modeling

  • Autoregressive model:

    • Autoregressive (AR) models are a class of time series models in which the value at a given time step is modeled as a linear function of previous values

    • NADE: Neural Autogressive Distribution Estimator

  • Autogressive model also has been a basis for many self-supervised methods such as gpt

Siamese Networks

Many contrastive self-supervised learning methods use a pair of neural networks and learned from their difference
– this idea can be tracked back to Siamese Networks

  • Self-organizing neural networks
    • where two neural networks take seperate but related parts of the input, and learns to maximize the agreement between the two outputs
  • Siamese Networks
    • if you believe that one network F can well encode x and get a good representation f(x)

    • then, 對(duì)于兩個(gè)不同的輸入x1和x2,their distance can be d(x1,x2) = L(f(x1),f(x2))

    • the idea of running two identical CNN on two different inputs and then comparing them —— a Siamese network

    • Train by:

      ? If xi and xj are the same person, ∣ ∣ f ( x i ) ? f ( x j ) ||f(xi)-f(xj) ∣∣f(xi)?f(xj) is small

      ? If xi and xj are the different person, ∣ ∣ f ( x i ) ? f ( x j ) ||f(xi)-f(xj) ∣∣f(xi)?f(xj) is large

Multiple Instance Learning & Metric Learning

Predecessors of the predetestors of the recent contrastive learning techniques : multiple instance learning and metric learning

  • deviate frome the typical framework of empirical risk minimization

    • define the objective function in terms of multiple samples from the dataset ? \Rightarrow ? multiple instance learning
  • ealy work:

    • around non-linear dimensionality reduction
    • 如multi-dimensional scaling and locally linear embedding
    • better than PCA: can preserving the local structure of data samples
  • metric learning:

    • x and y: two samples
    • A: A learnable positive semi-definite matrix
  • contrastive Loss:

    • use a spring system to decrease the distance between the same types of inputs, and increase between different type of inputs
  • Triplet loss

    • another way to obtain a learned metric
    • defined using 3 data points
    • anchor, positive and negative
    • the anchor point is learned to become similar to the positive, and dissimilar to the negative
  • N-pair loss:

    • generalized triplet loss
    • recent 對(duì)比學(xué)習(xí) 就以 N-pair loss 為原型

Methods

  • self-prediction
  • Contrastive learning

Methods for Framing Self-Supervised Learning Tasks

  • Self-prediction: Given an individual data sample, the task is to predict one part of the sample given the other part
    • 即 “Intra-sample” prediction

The part to be predicted pretends to be missing

  • Contrastive learning: Given multiple data samples, the task is to predict the relationship among them
    • relationship: can be based on inner logics within data

      ? such as different camera views of the same scene

      ? or create multiple augmented version of the same sample

The multiple samples can be selected from the dataset based on some known logics (e.g., the order of words / sentences), or fabricated by altering the original version
即 we know the true relationship between samples but pretend to not know it

Self-Prediction

  • Self-prediction construct prediction tasks within every individual data sample

    • to predict a part of the data from the rest while pretending we don’t know that part

    • The following figure: demonstrate how flexible and diverse the options we have for constructing self-prediction learning tasks

      ? can mask any dimensions

  • 分類:

    • Autoregressive generation
    • Masked generation
    • Innate relationship prediction
    • Hybrid self-prediction

Self-prediction: Autoregressive Generation

  • The autoregressive model predicts future behavior based on past behavior

    • Any data that comes with an innate sequential order can be modeled with regression
  • Examples :

    • Audio (WaveNet, WaveRNN)
    • Autoregressive language modeling (GPT, XLNet)
    • Images in raster scan (PixelCNN, PixelRNN, iGPT)

Self-Prediction: Masked Generation

  • mask a random portion of information and pretend it is missiing, irrespective of the natural sequence

    • The model learns to predict the missing portion given other unmasked information
  • e.g.,

    • predicting random words based on other words in the same context around it
  • Examples :

    • Masked language modeling (BERT)
    • Images with masked patch (denoising autoencoder, context autoencoder, colorization)

Self-Prediction: Innate Relationship Prediction

  • Some transformation (e.g., segmentation, rotation) of one data samples should maintain the original information of follow the desired innate logic

  • Examples

    • Order of image patches

      ? e.g., shuffle the patches

      ? e.g., relative position, jigsaw puzzle

    • Image rotation

    • Counting features across patches

Self-Prediction: Hybrid Self-Prediction Models

Hybrid Self-Prediction Models: Combines different type of generation modeling

  • VQ-VAE + AR
    • Jukebox (Dhariwal et al. 2020), DALL-E (Ramesh et al. 2021)
  • VQ-VAE + AR + Adversial
    • VQGAN (Esser & Rombach et al. 2021)

    • VQ-VAE: to learn a discrete code book of context rich visual parts

    • A transformer model: trained to auto-aggressively modeling the color combination of this code book

Contrastive Learning

  • Goal:

    • To learn such an embedding space in which similar sample pairs stay close to each other while dissimilar ones are far apart

  • 對(duì)比學(xué)習(xí) can be applied to both supervised and unsupervised settings

    • when working with unsupervised data, 對(duì)比學(xué)習(xí) is one of the most powerful approach in the self-supervised learning
  • Category

    • Inter-sample classification

      🚩 the most dominant approach

      ? “inter-smaple”: emphasize or distinguish it from “intra-sample”

    • Feature clustering

    • Multiview coding

Contrastive Learning: Inter-Sample Classification

  • Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify which ones are similar to the anchor data point is a classification task

    • anchor: the original input
  • How to construct a set of data point candidates:

    • The original input and its distorted version
    • Data that captures the same target from different views
  • Common loss functions :

    • Contrastive loss, 2005
    • Triplet loss, 2015
    • Lifted structured loss, 2015
    • Multi-class n-pair loss, 2016
    • Noise contrastive estimation, 2010
    • InfoNCE, 2018
    • Soft-nearest neighbors loss, 2007, 2019
Loss function 1: Contrastive loss
  • 2005

  • Works with labelled dataset

  • Encoder data into an embedding vector

    • such that examples from the same class have similar embeddings and samples from different classes have different ones
  • Given two labeled data pairs ( x i , y i ) (x_i,y_i) (xi?,yi?) and ( x j , y j ) (x_j,y_j) (xj?,yj?):

Loss function 2: Triplet loss
  • Triplet loss (Schroff et al. 2015)

    • learns to minimize the distance between the anchor x x x and positive x + x+ x+ and
    • maximize the distance between the anchor x x x and negative x ? x- x? at the same time
  • Given a triplet input ( x , x + , x ? ) (x, x^{+}, x^{-}) (x,x+,x?)

Triplet (三胞胎) loss: because it demands an input triplet containing one anchor, one positive and one negative

Loss function 3: N-pair loss
  • N-Pair loss (Sohn 2016)
    • generalizes triplet loss to include comparison with multiple negative samples
  • Given oen positive and N-1 negative samples:
    • { x , x + , x 1 ? , . . . , x N ? 1 ? } \{x,x^{+},x_{1}^{-},...,x_{N-1}^{-}\} {x,x+,x1??,...,xN?1??}

Loss function 4: Lifted structured loss
  • Lifted structured loss (Song et al. 2015):

    • utilizes all the pairwise edges within one training batch for better computational efficiency

  • 對(duì)于大規(guī)模訓(xùn)練,batchsize經(jīng)常非常大

    • means we have many samples within one batch
    • can construct multiple similar or dissimilar pairs
    • Lifted structured loss: utilize all the paragraphs edges of relationship within one training batch
    • improve compute efficiency as it incorporates more information within one batch
Loss function 5: Noise Contrastive Estimation (NCE)
  • Noise contrastive Estimation (NCE): Gutmann & Hyvarinen 2010

    • runs logistic regression to tell apart the target data from noise
  • Given target sample distribution p and noise distribution q:

  • initially proposed to learn word embedding in 2010

Loss function 6: InfoNCE
  • InfoNCE (2018)

    • Uses categorical cross-entropy loss to identify the positive sample amongst a set of unrelated noise samples
  • Given a context vector c, the positive sample should be drawn from the conditional distribution ( p ( x ∣ c ) ) (p(x|c)) (p(xc))

    • while N-1 negative samples are drawn from the proposal distribution p(x), independent from the context c
  • The probability of detecting the positive sample correctly is:

Loss function 7: Soft-Nearest Neighbors Loss
  • Soft-Nearest Neighbors Loss (Frosst et al. 2019): extends the loss function to include multiple positive samples given known labels
  • Given a batch of samples { x i , y i } ∣ i = 1 B \{x_i,y_i\}|_{i=1}^B {xi?,yi?}i=1B?
    • known labels may come from supervised dataset or fabricated with data augmentation

    • temperature term: tuning how concentrated the feature space

Contrastive Learning: Feature Clustering

  • Find similar data samples by clustering them with learned features

  • core idea : Use clustering algorithms to assign pseudo lables to samples such that we can run intra-sample contrastive learning

  • Examples:

    • Deep Cluster (Caron et al 2018)

    • Inter CLR (Xie et al 2021)

Contrastive Learning: Multiview Coding

  • Apply the InfoNCE objective to two or more different views of input data

  • Became a mainstream contrastive learning method

    • AMDIM (Bachman et al 2019)
    • Contrastive multiview coding (CMC, Tian et al 2019) 等

Contrastive Learning between Modalities

  • Views can be from paired inputs from two or more modalities
    • CLIP (Radford et al 2021)、ALIGN (Jia et al 2021):enables zero-shot classification, cross-modal retrieval, guided image generation

    • CodeSearchNet (Husain et al 2019): contrast learning between text and code

Pretext tasks

Recap: Pretext Tasks

  • Step 1: Pre-train a model for a pretext task

  • Step 2: Transfer to applications

Pretext Tasks: Taxonomy

  • Generative
    • VAE
    • GAN
    • Autoregressive
    • Flow-based
    • Diffusion
  • Self-Prediction
    • Masked Prediction (Denoising AE, Context AE)
    • Channel Shuffling (colorization, split-brain)
  • Innate Relationship
    • Patch Positioning
    • Image Rotation
    • Feature Counting
    • Contrastive Predictive Coding
  • Contrastive
    • Instance Discrim

    • Augmented Views

    • Clustering-based

Image / Vision Pretext Tasks

Image Pretext Tasks: Varizational AutoEncoders
  • Auto-Encoding Variational Bayes (Kingma et al. 2014)

  • Image generation:

    • itself is an immensely broad field that deserves an entire tutorial or more
    • but can also serve as representation learning
Image Pretext Tasks: Generative Adversial Networks
  • Jointly train an encoder, additional to the usual GAN

    • Bidirectional GAN

    • Adversarially Learned Inference

  • GAN Inversion: learning encoder post-hoc and/or optimizing for given image

Vision Pretext Tasks: Autoregressive Image Generation
  • Neural autoregressive density estimation (NADE)
  • Pixel RNN, Pixel CNN
    • Use RNN and CNN to predict values conditioned on the neighboring pixels
  • Image GPT
    • Uses a transformer on discretized pixels and was able to obtain better representation than building of supervised approaches

Vision Pretext Tasks: Diffusion Model
  • Diffusion Modeling :
    • Follows a Markov chain of diffusion steps to slowly add random noise to data

    • and then learn to reverse the diffusion process to construct desired data samples from the noise

Vision Pretext Tasks: Masked Prediction
  • Denoising autoencoder (Vincent et al. 2008)

    • Add noise = Randomly mask some pixels

    • Only reconstruction loss

  • Context autoencoder (Pathak et al 2016)

    • Mask a random region in the image

    • Reconstruction loss + adversial loss

    • adversial loss: tries to make it difficult to distingusih between the painting produced by the model and the actual image

Vision Pretext Tasks: Colorization and More

can not only be on the pixel value itself, but also on any subset of information from the image

  • Image Colorization

    • Predict the binned CIE Lab color space given a grayscale image
  • Split-brain autoencoder

    • Predict a subset of color channels from the rest of channels
    • Channels: luminosit, color, depth, etc.

In order to get representation that transfer well to downstream tasks

Vision Pretext Tasks: Innate Relationship Prediction
  • Learn the relationship among image patches:
    • Predict relative positions between patches
    • Jigsaw Puzzle using patches

  • RotNet: predict which rotation is applied (Gidaris et al. 2018)
    • Rotation does not alter the semantic content of an image
  • Representation Learning by Learning to Count (Noroozi et al. 2017)
    • Counting features across patches without labels, using equivariance of counts
    • ie, learns a function that counts visual primitives in images

Contrastive Predictive Coding and InfoNCE
  • Contrastive Predictive Coding (CPC) (van den Oord et al 2018)
    • Classify the “future” representation amongst a set of unrelated “negative” samples
    • an autoregressive context predictor is used to classify the correct future patches

  • minimizing the loss function 等價(jià)于 maxmizing a lower bound to the mutual information between the predicted context c t c_t ct? and the future patch x t + k x_{t+k} xt+k?
    • 相當(dāng)于預(yù)測(cè)的數(shù)據(jù)的latent representation最準(zhǔn)確

CPC has been highly influential in contrastive learning

  • showing the effectiveness of causing the problem as an entire sample classification task
Vision Pretext Tasks: Inter-Sample Classification
  • Example CNN
  • Instance-level discrimination
    • Each istance is a distinct calss of its own

      🚩 # classes = # training samples

    • Non-parametric softmax that compares features

    • Memory bank for stroing representations of past samples V = V { i } V=V\{i\} V=V{i}

The model learns to scatter the feature vectors in the hypersphere while mapping visually similar images into closer regions

Vision Pretext Tasks: Contrastive Learning
  • Common approach:
    • Positive: make multiple views to one images and consider the image and its distorted version as similar pairs
    • Negative: different images are treated dissimilar

一個(gè)自然的問題:Is there better ways to creat multiview images? ↓ \downarrow

Vision Pretext Tasks: Data Augmentation and Multiple Views
  • Augment Multiscale Deep InfoMax
    • AMDIM, Bachman 2019
    • Views from different augmentations
    • create multiple views from one input image
  • Contrastive Multiview Coding
    • CMC
    • Multiple views from different channels or semantic segmentation labels of the image as different views from a single image
  • Pretext-Invariant Representation Learning
    • Jigsam transformation
    • (as an input transform)
Vision Pretext Tasks: Inter-Sample Classification
MoCo
  • MoCo (Momentum Contrast; He et al. 2019)

    • Memory bank is a FIFO queue now
    • The target features are encoded using a momentum encoder ? \Rightarrow ? 一個(gè)batch付出很小的代價(jià)即可獲得更多的negative samples
    • shuffling BN: 緩解BN對(duì)self-supervised learning的不利影響
      - MOCO v2:
    • MLP projection head
    • stronger data augmentation (添加了模糊)
    • Cosine learning rate schedule

  • MoCo v3:

    • Use Vision Transformer to replace ResNet
    • in-batch negatives

SimCLR
  • SimCLR (Simple framework for Contrastive Learning of visual Representation)
    • Contrastive learning loss

    • f() – base encoder

    • g() – projection head layer

    • In-batch negative samples

      ? Use large batches to have sufficient number of negative inputs

fully symmetric;

  • SimCLR v2
    • Larger ResNet models
    • Deeper g()
    • Memory bank

Barlow Twins
  • Barlow Twins (Zbontar et al. 2021)

    • Learn to make the cross-correlation matrix between two output features for two distorted version of the same sample close to the identity
    • Make it as diagonal as possible
    • because: if the individual features are efficiently encoded, they shouldn’t be encoding information that is redundant between any pairs ? \Rightarrow ? their corrleation should be zero

Vision Pretext Tasks: Non-Contrastive Siamese Networks

Learn similarity representations for different augmented views of the same sample, but no contrastive component involving negative samples

  • the objective is just minimizing the L2 distance between features encoded from the same image

  • Bootstrap Your Own Latent (BYOL, et al. )

    • Momentum-encoded features as the target
  • Simsiam (Chen 2020)

    • No momentum encoder
    • Large batch size unnecessary
  • BatchNorm seems to be playing an important role

    • might implicityly providing contrastive learning signal

Vision Pretext Tasks: Feature Clustering with K-Means

another major technology for self-supervised learning:

  • to learn from clusters of features
  • DeepCluster (Caron et al. 2018)
    • Iteratively clusters features via k-means
    • then, uses cluster assignments as pseudo lables to provide supervised signals
  • Online DeepCluster (Zhan et al. 2020)
    • Performs clustering and netwrok update simultaneously rather than alternatingly

  • Prototypical Cluster Learning (PCL, Li et al. 2020)
    • Online EM for clustering
    • combined with InfoNCE for smoothness
Vision Pretext Tasks: Feature Clustering with Sinkhorm-Knopp

Sinkhorm-Knopp: a cluster algorithm based on OT

  • SeLa (Self-Labelling, Asano et al. 2020)
  • SwAV (Swapping Assignments between multiple Views; Caron et al. 2020)
    • Implicit clustering via a learned prototype code (“anchor clusters”)
    • Predict cluster assignment in the other column

Vision Pretext Tasks: Feature Clustering to improve SSL

In this approach, nobel ideas based on clustering are designed to be used in conjunction with other SSL methods

  • InterCLR (Xie et al. 2020)
    • Inter-sample contrastive pairs are constructed according to pseudo labels obtained by clustering
    • 即讓對(duì)比學(xué)習(xí)的正樣本也可以來自不同的圖片 (而不是只能通過Multi-view) using pseudolabels from an online k-means clustering
  • Divide and Contraset (Tian et al. 2021)
    • Train expert models on the clustered datasets and then distill the experts into a single model

    • to improve the performance of other self-supervised learning models

Vision Pretext Tasks: Nearest-Neighbor
  • NNCLR (Dwibedi et al. 2021)
    • Contrast with the nearest neighbors in the embedding space

      ? to serve as the positive and negtive in contrastive learning

    • Allows for lighter data augmentation for views

Vision Pretext Tasks: Combining with Supervised Loss
  • Combine supervised loss + self-supervised learning
    • Self-supervised semi-supervised learning (S4L, Zhai et al 2019)
    • Unsupervised data augmentation (UDA, Xie et al 2019)
  • Use known labels for contrastive learning
    • Supervised Contrastive Loss (SupCon; Khosla et al. 2021)

      ? less sensitive to hyperparameter choices

Video Pretext Tasks

Video Pretext Tasks: Innate Relationship Prediction
  • Most image pretext tasks can be applied to videos
  • However, with an additional time dimension, much more information about the video shot configuration or the physical world can be extracted from videos
    • Predicting object movements
    • 3D motion of camera
Video Pretext Tasks: Optical Flow

Tracking object movement tracking in time

  • Tracking movement of image patches (Wang & Gupta, 2016)

  • Segmentation based on motion (Pathak et al. 2017)
Video Pretext Tasks: Sequence Ordering
  • Temporal order Verification

    • Misra et al. 2016

    • Fernando et al. 2017

    • 判斷順序是否正確

  • Predict the arrow of time, forward or backward

    • Wei et al. 2018
    • classify whether the sequene is moving forward or backward in time
    • outperform the temporal order verification model
Video Pretext Tasks: COlorization
  • Tracking emerges by colorizing videos (Vondrick et al. 2018)

    • Copy colors from a reference frame to another target frame in grayscale

    • by leverage the natural temporal coherence of colors across video frames

  • Tracking emerges by colorizing videos (Vondrick et al. 2018)

    • Used for video segmentation or human pose estimation without fine-tuning

      ? because the model can move the colored markings in the labeled input image directly in the prediction

Video Pretext Tasks: Contrastive Multi-View Learning
  • TCN (Sermanet et al. 2017)

    • Use triplet loss

    • Different viewpoints at the same timestep of the same scene should share the same embedding, while embedding should vary in time, even of the same camera viewpoint

  • Multi-frame TCN (Dwibedi et al. 2019)

    • Use n-pairs loss
    • Multiple frames are aggregated into the embedding
Video Pretext Task: Autoregressive Generation

Because video files are huge, generating coherent continuous of video has been a difficult task

  • Predicting videos with VQ-VAE (Walker et al. 2021)

    • first: learning to discretized the video into latent codes using VQ-VAE

    • then: learning to auto regressively generate the frames using pixel cnn or transformers

    • Combining VQ-VAE and autogressively models to generate high dimensional data ? \Rightarrow ? is a very powerful generating model

  • VideoGPT: Video generation using VQ-VAE and Transformers (Yan et al. 2021)

  • Jukebox (Dhariwal et al. 2020)

    • learning 3 different level of VQ-VAE using 3 different compression ratio
    • resulting 3 sequence of discrete code
    • then use them to generate new music

  • CALM (Castellon et al. 2021)
    • Jukebox representation for MIR tasks
  • TagBox (Manilow et al. 2021)
    • Source separation by steering Jukebox’ latent space

Audio Pretext Tasks

Audio Pretext Tasks: Contrastive Learning
  • COLA (Saeed et al. 2021)
    • Assigns high similarity between audio clip extracted from the same recording and low similarity to clips from different recordings
    • predicts a pari of encoded features are from the same recording or not
  • Multi-Format audio contrastive learning
    • assigns high similarity between the raw audio format and the corresponding spectral representation

    • maximizing agreement between between features included from the raw waveform and he spectrogram formats

Audio Pretext Task: Masked Languagee Modeling for ASR

ASR: Automatic speech recognition

  • Wav2Vec 2.0 (Baevski et al. 2020)

    • applies contrast siblings on the representation of mask portion of the audio

      ? to learn discrete tokens from them

    • speech recognition models: trained on these token, show better performance compared to those trained on conventional audio features / raw audio

  • HuBERT (Hsu et al. 2021, FAIR)

    • learned by alternating between an offline cadence clustering step and optimizing for cluster assignment prediction (similar to deep cluster)
  • Also employed by SpeechStew (Chan et al. 2021), Big SSL (Zhang et al. 2021)

Multimodal Pretext Tasks

applied to multimodal data, although the difinition of self-supervised learning gets kind of blurry here depending on whether you consider a multi-modal dataset as single unlabeled dataset or as if one modality gives supervision to another modality

  • MIL-NCE (Miech et al. 2020)

    • Find matching narration with video

    • trained constrastively to find matching narration with video, which can not only use for correcting misalignment in videos but also for action recognition, text to video retrieval, action localization and action segmentation

  • CLIP (Radford et al. ), ALIGN (Jia et al. 2021)

    • Contrast text and image embeddings from paired data

Language Pretext Tasks

Language Pretext Tasks: Generative Language Modeling
  • Pretrained language models:

    • They all rely on unsupervised text and try to predict one sentence from the context
    • only depend on the natural order of words and sequences
  • Some examples: changed the landscape of NLP research quite a lot

    • GPT

      ? Autogressive;

      ? predict the next token based on the previous tokens

    • BERT

      ? as a bi-directional transformer model

      ? Masked language modeling (MLM)

      ? Next sentence prediction (NSP) ? \Rightarrow ? a binary classifier for telling whether one sentence is the next sentence of the other

    • ALBERT

      ? Sentence order prediction (SOP) ? \Rightarrow ? Positive sample: a pair of two consecutive segments from the same document; Negative sample: same as above but with the segment order switch

    • ELECTRA

      ? Replaced token detection (RTD) ? \Rightarrow ? random tokens are replaced and considered corrected, in parallel a binary discriminator is trained together with the generative model to predict whether each token has been replaced

Language Pretext Tasks: Sentence Embedding
  • Skip-thought vectors (Kiros et al. 2015)

    • Predict sentences based on other sentences around
  • Quick-thought vectors (Logeswaran & Lee, 2018)

    • Identify the correct context sentence among other contrastive sentences

  • IS-BERT (“Info-Sentence BERT”; Zhang et al. 2020)

    • matual information maximization
  • SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)

    • Predict a sentence from itself with only dropout noise
    • One sentence gets two different versions of dropout augmentations

  • Most of the models for learning sentence embedding relies on supervised NLI (Natural Language Inference) datasets, such as SBERT (Reimers & Gurevych 2019), BERT-flow
  • Unsupervised sentence embedding models (e.g., unsupervised SimCSE) still have performance gap with the supervised version (e.g., supervised SimCSE)

Training Techniques

  • Data augmentation
  • In-batch negatives samples
  • Hard negative mining
  • Memory bank
  • Large batchsize

contrastive learning can provide good results in terms of transfer performance

Techniques: Data augmentation

  • Data augmentation setup is critical for learning good embedding

    • and generalizable embdding features
  • 方法:

    • Introduces the non-essential variations into examples without modifying semantic meanings
    • ? \Rightarrow ? thus encourages the model to learn the essential part within the representation

image augmentation; text augmentation

Techniques: Data augmentation – Image Augmentation
  • Basic Image Augmentation:

    • Random crop
    • color distortion
    • Gaussian blur
    • color jittering
    • random flip / rotation
    • etc.
  • Augmentation Strategies

    • AutoAugment (Cubuk, et al. 2018): Inspired by NAS
    • RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment
    • PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithms
    • UDA (Unsupervised Data Augmentation ,Xie et al. 2019): select augmentation strategy to minimize the KL divergencec between the predicted distribution over an unlabelled example and its unlabelled augmented version
  • Image mixture

    • Mixup (Zhang et al. 2018): weighted pixel-wise combination of two images

      ? to create new sampls based on existed ones

    • Cutmix (Yun et al 2019): mix in a local region of one image into the other

    • MoCHi (Mixing of Contrastive Hard Negatives): mixture of hard negative samples

      ? explicitly maintains a queue of some number of negative samples sorted by similarity to the query in descending order ? \Rightarrow ? the first couple samples in the queue should be the hardest and negative samples ? \Rightarrow ? then new hard negative can be created by mixing images in this queue together or even with the query

Techniques: Data augmentation – Text Augmentation
  • Lexical (詞匯的) Edits.

    • (Just changing the words or tokens)

    • EDA (Easy Data Augmentation; Wei & Zhou 2019): Synonym replacement, random insertion / swap / deletion

    • Contextual Augmentation (Kobayashi 2018): word substition by BERT prediction

      ? try to find the replacement words using a bi-directional language model

  • Back-translation (Sennrich et al. 2015)

    • augments by first translating it to another language and then translating it back to the original language

      ? depends on the translation model ? \Rightarrow ? the meaning should stay largely unchanged

    • CERT (Fang et al. 2020) generates augmented sentences via back-translation

  • Dropout and Cutoff

    • SimCSE uses dropout (Gao et al. 2021)

      ? drouput: a universal way to apply transformnation on any input

      ? SimCSE: use drouput to creat different copies of the same text ? \Rightarrow ? universial because it doe not need expert knowledege about the attributes of this input modality (it is changes on the architecture level)

    • Cutoff augmentation for text (Shen et al. 2020)

      ? masking random selected tokens, feature columns, spans

Hard Negative Mining

What is “hard negative mining”
  • Hard negative samples are different to learn
    • They should have different labels from the anchor samples
    • But the embedding features may be very close
  • Hard negative mining is important for contrastive learning
  • Challenging negative samples encourages the model to learn better representations that can distinguish hard negatives from true positives
Explicit hard negative mining
  • Extract task-specific hard negative samples from labelled datasets
    • e.g., “contradiction” sentence pairs from NLI datasets.
    • (Most sentence embedding papers)
  • Keyword based retrieval
    • can be found by classic information retrieval models (Such as BM25)
  • Upweight the negative sample probability to be proportional to its similarity to the anchor sample
  • MoCHi: mine hard negative by sorting them according to similarity to the query in descending order
Implicit hard negative mining
  • In-batch negative samples
  • Memory bank (Wu et al. 2018, He et al. 2019)
    • Increase batch size
  • Large batch size via various training parallelism

Need large batchsize

Theories

Why does contrastive learning work?

Contrastive learning captures shared information betweem views

  • InfoNCE (van den Oord et al. 2018)

    • is a lower bound to MI (Mutual information) between views:

  • Minimizing InfoNCE leads to maximizing the MI between view1 and view2

    • 因此,minimizing the inforNCE loss ? \Rightarrow ? the encoder are optimizing the embedding space to retain as much information as possible that exsited between the two views
    • The info max principle in contrastive learning

  • Q: How can we design good views?

    • augmentations are crucial for the performance

The InfoMin Principle

  • Optimal views are at the sweet spot where it only encodes useful informnation for transfer
    • Minimal sufficient encoder depends on downstream tasks (Tian et al. 2020)

    • Composite loss for finding the sweet spot (Tsai et al. 2020)

      ? helps converging to a minimal sufficient encoder

To perform well in transfer learning ? \Rightarrow ? we want our model to capture the mutual information between the data x and the downstream label y I ( x ; y ) I(x;y) I(x;y)

  • if the mutual information between the views ( I ( v 1 ; v 2 ) I(v_1; v_2) I(v1?;v2?)) is smaller than I ( x ; y ) I(x;y) I(x;y) ? \Rightarrow ? the model would fail to capture useful information for the downstream tasks
  • Meanwhile, if the mutual information between the views are too large ? \Rightarrow ? would have excess information that is unrelated to the downstream tasks ? \Rightarrow ? the transfor performance would decrease due to the noise
  • ? \Rightarrow ? there is a sweet spot ? \Rightarrow ? the minimal sufficient encoder
  • This shows:
    • The optimal views are dependent on the downstream tasks

Alignment and Uniformity on the Hypersphere

  • Contrastively learned features are more uniform and aligned

    • Uniform : features should be distributed uniformly on the hypershere S d S^d Sd
    • Aligned : features from two views of the same input should be the same

  • compared with random initialized network or a network trained with the supervised learning
  • also measured the alignment measuring how close the distance between features from two views of the same input is

Dimensional Collapse

  • Contrastive methods sometimes suffer from dimensional collapse (Hua et al. 2021)
    • Features span lower-dimensional subspace instead
    • (Learned features span lower dimensional subspace instead of using the full dimensionality)
  • Two causes demonstrated by Jing et al (2021)
    • 1 Strong augmentation while creating the views
    • 2 implicit regularization caused by the gradient decent dynamics

Provable Guarantees for Contrastive Learning

  • Sampling complexity decreases when:
    • Adopting contrastive learning objectives (Arora et al. 2019)
    • Predicting the known distribution in teh data (Lee et al. 2020)
  • Linear classifier on learned representation is nearly optimal (Tosh et al. 2021)
  • Spectral Contrastive Learning (HaoChen et al. 2021)
    • based on a spectral decomposition of the augmentation graph

總之,對(duì)比學(xué)習(xí)理論起到了很大作用,但仍有很長的路要走

Feature directions

briefly discuss a few open research questions and areas of work to look into

Future Directions

  • Large batch size ? \Rightarrow ? improved transfer performance

  • High-quality large data corpus ? \Rightarrow ? better performance

    • Learning from synthetic or Web data
    • Measuring dataset quality and filtering / active learning ? \Rightarrow ? better control over data quality
  • Efficient negative sample selection

    • to do hard negative mining
    • (lage batchsize is not enough because batchsize cannot go to infinity)
  • Combine multiple pretext tasks

    • How to combine
    • Best strategies

  • Data augmentation tricks have critical impacts but are still quite ad-hoc

    • Modality-dependent: 大多數(shù)增強(qiáng)方法僅適用于單個(gè)modality ? \Rightarrow ? most of them are handcrafted by human

    • Theoretical foundations

      ? e.g., on why certain augmentation works better than others

      ? to guide us to find more efficient data augmentation

  • Improving training efficiency

    • Self-supervised learning methods are pushing the deep learning arms race (軍備競(jìng)賽)

      ? increase of model size and training batch size

      ? ? \Rightarrow ? leads to increase the cost both economically and environmentally

    • Direct impacts on the economical and environmental costs

  • Social biases in the embedding space

    • Early work in debiasing word embedding
    • Biases in Dataset

總結(jié)

以上是生活随笔為你收集整理的Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

国产区女主播在线观看 | 一个人看的www免费视频在线观看 | 成人免费无码大片a毛片 | 乱人伦人妻中文字幕无码久久网 | 久久国产36精品色熟妇 | 亚洲国产精品成人久久蜜臀 | 国产午夜手机精彩视频 | 内射爽无广熟女亚洲 | 天天爽夜夜爽夜夜爽 | 日韩人妻系列无码专区 | 99久久人妻精品免费二区 | 天堂一区人妻无码 | 亚洲国产欧美在线成人 | 欧美人与动性行为视频 | 国产精品久久久一区二区三区 | 99久久人妻精品免费二区 | 日日摸夜夜摸狠狠摸婷婷 | 小sao货水好多真紧h无码视频 | 久久久精品人妻久久影视 | 亚洲性无码av中文字幕 | 亚洲国产精品无码久久久久高潮 | 综合激情五月综合激情五月激情1 | 国产极品视觉盛宴 | 野外少妇愉情中文字幕 | 欧美freesex黑人又粗又大 | 领导边摸边吃奶边做爽在线观看 | 国产亚洲欧美日韩亚洲中文色 | 国产精品内射视频免费 | 久久久久国色av免费观看性色 | 18无码粉嫩小泬无套在线观看 | 亚洲区欧美区综合区自拍区 | 人人澡人人妻人人爽人人蜜桃 | 国产精品办公室沙发 | 成人试看120秒体验区 | 漂亮人妻洗澡被公强 日日躁 | 亚洲日韩av片在线观看 | 在线播放亚洲第一字幕 | 日日天日日夜日日摸 | 人人澡人人妻人人爽人人蜜桃 | 欧美高清在线精品一区 | 日韩 欧美 动漫 国产 制服 | 水蜜桃亚洲一二三四在线 | 亚洲中文字幕乱码av波多ji | 国产av一区二区精品久久凹凸 | 久久久国产精品无码免费专区 | 又色又爽又黄的美女裸体网站 | 国产精品久久国产三级国 | 乌克兰少妇性做爰 | 亚洲成在人网站无码天堂 | 欧美国产日韩久久mv | 夜夜夜高潮夜夜爽夜夜爰爰 | 免费乱码人妻系列无码专区 | 蜜桃视频插满18在线观看 | 国产精品成人av在线观看 | 久久久久免费看成人影片 | 精品亚洲韩国一区二区三区 | 亚洲中文字幕在线无码一区二区 | 天天摸天天碰天天添 | 欧美乱妇无乱码大黄a片 | 精品偷拍一区二区三区在线看 | 欧美放荡的少妇 | 国产人妻精品午夜福利免费 | 午夜精品久久久久久久久 | 少妇邻居内射在线 | 欧美人与禽zoz0性伦交 | 国产成人无码av一区二区 | 亚洲欧美日韩国产精品一区二区 | 十八禁视频网站在线观看 | 好屌草这里只有精品 | 麻豆精品国产精华精华液好用吗 | 日韩成人一区二区三区在线观看 | 夜夜影院未满十八勿进 | 性欧美videos高清精品 | 亚洲乱码中文字幕在线 | 日日天干夜夜狠狠爱 | 水蜜桃亚洲一二三四在线 | 亚洲天堂2017无码 | 亚洲の无码国产の无码步美 | 永久黄网站色视频免费直播 | 国产一区二区三区影院 | 国内少妇偷人精品视频 | 中文字幕乱妇无码av在线 | 亚洲娇小与黑人巨大交 | 国产午夜福利亚洲第一 | 日韩人妻少妇一区二区三区 | 日本爽爽爽爽爽爽在线观看免 | 正在播放老肥熟妇露脸 | 免费国产成人高清在线观看网站 | 日韩欧美群交p片內射中文 | 福利一区二区三区视频在线观看 | 欧美变态另类xxxx | 少妇性l交大片欧洲热妇乱xxx | 蜜臀aⅴ国产精品久久久国产老师 | 少妇无码一区二区二三区 | 爽爽影院免费观看 | а√天堂www在线天堂小说 | 麻豆精品国产精华精华液好用吗 | 97精品国产97久久久久久免费 | 国产色在线 | 国产 | 97人妻精品一区二区三区 | 丰满人妻翻云覆雨呻吟视频 | 亚洲成a人片在线观看日本 | 色一情一乱一伦一视频免费看 | 亚洲精品一区三区三区在线观看 | 爱做久久久久久 | 久久久久久久女国产乱让韩 | 国产欧美熟妇另类久久久 | 天天爽夜夜爽夜夜爽 | 伊人久久大香线蕉亚洲 | 国产午夜手机精彩视频 | 人人爽人人澡人人高潮 | 麻花豆传媒剧国产免费mv在线 | 永久免费精品精品永久-夜色 | 国产人妻大战黑人第1集 | 俺去俺来也在线www色官网 | 真人与拘做受免费视频 | 日本熟妇人妻xxxxx人hd | 丝袜美腿亚洲一区二区 | 国产av一区二区精品久久凹凸 | 成人试看120秒体验区 | 亚洲精品久久久久久久久久久 | a片在线免费观看 | 国产乡下妇女做爰 | 国产 精品 自在自线 | 97se亚洲精品一区 | 老太婆性杂交欧美肥老太 | 欧美性生交xxxxx久久久 | 久久国产精品精品国产色婷婷 | 国产精品久久久久影院嫩草 | 宝宝好涨水快流出来免费视频 | 亚洲乱码中文字幕在线 | 熟妇人妻无乱码中文字幕 | 久久这里只有精品视频9 | 丝袜美腿亚洲一区二区 | 中文字幕精品av一区二区五区 | 澳门永久av免费网站 | 久久久久99精品成人片 | 精品夜夜澡人妻无码av蜜桃 | 欧美阿v高清资源不卡在线播放 | 欧美人与牲动交xxxx | 少妇人妻大乳在线视频 | 国产精品久久国产三级国 | 青春草在线视频免费观看 | 国产网红无码精品视频 | √8天堂资源地址中文在线 | 人妻天天爽夜夜爽一区二区 | 欧美性猛交内射兽交老熟妇 | 粗大的内捧猛烈进出视频 | 国产亚洲精品久久久ai换 | √天堂中文官网8在线 | 国内揄拍国内精品少妇国语 | 中文字幕乱码中文乱码51精品 | av无码电影一区二区三区 | 亚洲小说春色综合另类 | 青草视频在线播放 | 亚洲娇小与黑人巨大交 | 国产在热线精品视频 | 亚洲 a v无 码免 费 成 人 a v | 玩弄中年熟妇正在播放 | 天天爽夜夜爽夜夜爽 | aa片在线观看视频在线播放 | 又粗又大又硬毛片免费看 | 在线看片无码永久免费视频 | 一二三四在线观看免费视频 | 风流少妇按摩来高潮 | 在线 国产 欧美 亚洲 天堂 | 成人动漫在线观看 | 亚洲人成影院在线观看 | 国产三级精品三级男人的天堂 | av无码不卡在线观看免费 | 亚洲色大成网站www国产 | 亚洲经典千人经典日产 | 亚洲精品欧美二区三区中文字幕 | 国产精品美女久久久 | 超碰97人人做人人爱少妇 | 免费国产成人高清在线观看网站 | 强伦人妻一区二区三区视频18 | 国产97在线 | 亚洲 | 麻花豆传媒剧国产免费mv在线 | 久热国产vs视频在线观看 | 97色伦图片97综合影院 | 久久久久成人片免费观看蜜芽 | 无码人妻丰满熟妇区毛片18 | 国产成人午夜福利在线播放 | 精品人妻人人做人人爽 | 久久熟妇人妻午夜寂寞影院 | 波多野结衣乳巨码无在线观看 | 国产精品亚洲а∨无码播放麻豆 | 亚洲精品一区二区三区在线观看 | 日韩人妻无码一区二区三区久久99 | 在线a亚洲视频播放在线观看 | 亚洲精品一区二区三区四区五区 | 久激情内射婷内射蜜桃人妖 | 久久人妻内射无码一区三区 | 人妻少妇精品无码专区动漫 | 色综合久久久无码网中文 | 亚洲另类伦春色综合小说 | 激情国产av做激情国产爱 | 无码精品人妻一区二区三区av | 亚洲国产欧美国产综合一区 | 熟女少妇人妻中文字幕 | 国产午夜手机精彩视频 | 久久国产精品二国产精品 | 国产亲子乱弄免费视频 | ass日本丰满熟妇pics | 亚洲成av人片在线观看无码不卡 | 乌克兰少妇性做爰 | 亚洲自偷自拍另类第1页 | 国产精品igao视频网 | 日本乱偷人妻中文字幕 | 野狼第一精品社区 | 国产人妻久久精品二区三区老狼 | 亚洲日韩av一区二区三区中文 | 免费国产成人高清在线观看网站 | 樱花草在线社区www | 亚洲天堂2017无码 | 少妇久久久久久人妻无码 | 超碰97人人做人人爱少妇 | 国产午夜手机精彩视频 | 免费看少妇作爱视频 | 99视频精品全部免费免费观看 | 国产精品高潮呻吟av久久4虎 | 亚洲 激情 小说 另类 欧美 | 国产精品-区区久久久狼 | 久久久精品国产sm最大网站 | 欧美一区二区三区 | 午夜精品一区二区三区在线观看 | 巨爆乳无码视频在线观看 | 天天躁日日躁狠狠躁免费麻豆 | 图片区 小说区 区 亚洲五月 | 国产成人精品无码播放 | 少妇被粗大的猛进出69影院 | 亚洲乱码国产乱码精品精 | 在线成人www免费观看视频 | 一本久久a久久精品vr综合 | 国产精品美女久久久久av爽李琼 | 兔费看少妇性l交大片免费 | 丝袜足控一区二区三区 | 欧美日韩一区二区三区自拍 | 无码人妻丰满熟妇区五十路百度 | 日本护士xxxxhd少妇 | 国产亚洲精品久久久久久大师 | 久久97精品久久久久久久不卡 | 人人妻人人澡人人爽欧美一区 | 人妻与老人中文字幕 | 骚片av蜜桃精品一区 | 国产无遮挡吃胸膜奶免费看 | 亚洲人成网站在线播放942 | 久久亚洲中文字幕无码 | 伊人久久婷婷五月综合97色 | 最近中文2019字幕第二页 | 欧美黑人性暴力猛交喷水 | 国产人妻人伦精品 | 国产猛烈高潮尖叫视频免费 | 特黄特色大片免费播放器图片 | 亚洲国产欧美在线成人 | 欧美成人家庭影院 | 日本乱人伦片中文三区 | 强奷人妻日本中文字幕 | 国产亚洲欧美日韩亚洲中文色 | 青青草原综合久久大伊人精品 | 日本一区二区更新不卡 | 熟女俱乐部五十路六十路av | 性色欲网站人妻丰满中文久久不卡 | 国产美女极度色诱视频www | 色综合久久久久综合一本到桃花网 | 香港三级日本三级妇三级 | 福利一区二区三区视频在线观看 | 岛国片人妻三上悠亚 | 在线观看免费人成视频 | 日本一区二区三区免费播放 | 嫩b人妻精品一区二区三区 | 亚洲精品成人福利网站 | 中文字幕中文有码在线 | 无码一区二区三区在线观看 | 久久国产劲爆∧v内射 | 免费观看又污又黄的网站 | 高清无码午夜福利视频 | 亚洲精品中文字幕久久久久 | 熟妇人妻无码xxx视频 | 丁香花在线影院观看在线播放 | 中文字幕乱妇无码av在线 | 扒开双腿吃奶呻吟做受视频 | 久久久久久久久蜜桃 | 中文字幕av无码一区二区三区电影 | 国产精品无码成人午夜电影 | 国产精品怡红院永久免费 | 精品无码国产一区二区三区av | 亚洲一区二区三区在线观看网站 | 男女猛烈xx00免费视频试看 | 国产热a欧美热a在线视频 | 无码福利日韩神码福利片 | 国产av一区二区三区最新精品 | 国产人妖乱国产精品人妖 | 日韩欧美群交p片內射中文 | 天堂а√在线地址中文在线 | 国产免费无码一区二区视频 | 少妇性l交大片欧洲热妇乱xxx | 国产精品永久免费视频 | 女人被爽到呻吟gif动态图视看 | 欧美大屁股xxxxhd黑色 | 曰韩少妇内射免费播放 | 丝袜人妻一区二区三区 | 牲欲强的熟妇农村老妇女视频 | 性生交片免费无码看人 | 亚洲第一网站男人都懂 | 少妇太爽了在线观看 | 台湾无码一区二区 | 国产在线精品一区二区三区直播 | 欧美人与物videos另类 | 国产精品多人p群无码 | 久久久久久久久888 | 国产黄在线观看免费观看不卡 | 国产成人人人97超碰超爽8 | 国产精品亚洲а∨无码播放麻豆 | 在线精品亚洲一区二区 | 人妻插b视频一区二区三区 | 奇米影视7777久久精品 | 乱码av麻豆丝袜熟女系列 | 欧美一区二区三区 | 亚洲高清偷拍一区二区三区 | 999久久久国产精品消防器材 | 久久精品无码一区二区三区 | 精品国产一区二区三区四区在线看 | 午夜成人1000部免费视频 | 久久人人爽人人人人片 | 麻豆av传媒蜜桃天美传媒 | 精品无码国产自产拍在线观看蜜 | 97久久超碰中文字幕 | 无码国产激情在线观看 | 久久久av男人的天堂 | 精品无码成人片一区二区98 | 日本大乳高潮视频在线观看 | 精品无人国产偷自产在线 | √8天堂资源地址中文在线 | 无套内谢老熟女 | 婷婷五月综合缴情在线视频 | 玩弄中年熟妇正在播放 | 麻豆精品国产精华精华液好用吗 | 国产激情无码一区二区app | 久久综合久久自在自线精品自 | 日本www一道久久久免费榴莲 | 性史性农村dvd毛片 | 色婷婷香蕉在线一区二区 | 国产69精品久久久久app下载 | 亚洲精品一区国产 | 国产办公室秘书无码精品99 | 人人超人人超碰超国产 | 日韩精品无码一区二区中文字幕 | 亚洲一区二区三区在线观看网站 | 全球成人中文在线 | 4hu四虎永久在线观看 | 亚洲午夜久久久影院 | 精品aⅴ一区二区三区 | 久久国产精品_国产精品 | 又色又爽又黄的美女裸体网站 | 欧美野外疯狂做受xxxx高潮 | 欧美激情内射喷水高潮 | www国产精品内射老师 | 天堂а√在线地址中文在线 | 无码精品国产va在线观看dvd | 亚洲一区二区三区播放 | 99久久人妻精品免费二区 | 国产精品久久国产三级国 | 丰满少妇熟乱xxxxx视频 | 成 人 免费观看网站 | 内射白嫩少妇超碰 | 久9re热视频这里只有精品 | 久久人妻内射无码一区三区 | 蜜桃臀无码内射一区二区三区 | 内射后入在线观看一区 | 亚洲精品国产精品乱码视色 | 国产在线一区二区三区四区五区 | 精品 日韩 国产 欧美 视频 | 中文亚洲成a人片在线观看 | 亚洲精品欧美二区三区中文字幕 | 内射爽无广熟女亚洲 | 亚洲阿v天堂在线 | 2019午夜福利不卡片在线 | 亚洲熟女一区二区三区 | 国产又爽又黄又刺激的视频 | 亚洲国产精品久久人人爱 | 牛和人交xxxx欧美 | 永久免费观看国产裸体美女 | 老头边吃奶边弄进去呻吟 | 樱花草在线播放免费中文 | 成 人影片 免费观看 | 免费人成网站视频在线观看 | 欧美日韩视频无码一区二区三 | 无码国产色欲xxxxx视频 | 免费乱码人妻系列无码专区 | 亚洲国产精品无码久久久久高潮 | 无码人妻精品一区二区三区下载 | 中文久久乱码一区二区 | 中文字幕亚洲情99在线 | 俺去俺来也在线www色官网 | 久久久精品欧美一区二区免费 | 日本一卡二卡不卡视频查询 | 亚洲精品欧美二区三区中文字幕 | 97色伦图片97综合影院 | 强奷人妻日本中文字幕 | 中文字幕 亚洲精品 第1页 | 日日碰狠狠丁香久燥 | 欧美性色19p | 国产suv精品一区二区五 | 亚洲一区二区三区含羞草 | 亚洲中文字幕在线观看 | 欧美丰满熟妇xxxx性ppx人交 | 色窝窝无码一区二区三区色欲 | 久久人人97超碰a片精品 | 国产xxx69麻豆国语对白 | 又大又硬又黄的免费视频 | 丰满少妇熟乱xxxxx视频 | 成人精品视频一区二区三区尤物 | 波多野结衣高清一区二区三区 | 小sao货水好多真紧h无码视频 | 好屌草这里只有精品 | 亚洲国产精品久久人人爱 | 欧美 日韩 人妻 高清 中文 | 成在人线av无码免费 | 国产精品久久久av久久久 | 精品偷自拍另类在线观看 | 国产三级久久久精品麻豆三级 | 一个人看的视频www在线 | 国产热a欧美热a在线视频 | 捆绑白丝粉色jk震动捧喷白浆 | 在线播放无码字幕亚洲 | 国产乱人无码伦av在线a | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 激情亚洲一区国产精品 | 色情久久久av熟女人妻网站 | 欧美 丝袜 自拍 制服 另类 | 18禁止看的免费污网站 | √8天堂资源地址中文在线 | 成人亚洲精品久久久久 | 精品无人国产偷自产在线 | 精品一区二区三区波多野结衣 | 麻豆果冻传媒2021精品传媒一区下载 | 日韩欧美中文字幕公布 | 成人精品视频一区二区三区尤物 | 欧美日韩色另类综合 | 国产精品久久国产精品99 | 中文字幕亚洲情99在线 | www国产亚洲精品久久网站 | 欧美人与牲动交xxxx | 成年美女黄网站色大免费全看 | 丝袜人妻一区二区三区 | 国产成人综合美国十次 | 欧美精品无码一区二区三区 | 丰满少妇女裸体bbw | 欧美 丝袜 自拍 制服 另类 | 少妇人妻偷人精品无码视频 | 99久久精品无码一区二区毛片 | 国产精品久久福利网站 | 人人妻人人藻人人爽欧美一区 | 午夜丰满少妇性开放视频 | 又色又爽又黄的美女裸体网站 | 大地资源网第二页免费观看 | 黑人巨大精品欧美一区二区 | 欧美日韩人成综合在线播放 | 亚洲色www成人永久网址 | 在线观看免费人成视频 | 久久天天躁狠狠躁夜夜免费观看 | 免费人成网站视频在线观看 | 色综合久久88色综合天天 | 国产人妻久久精品二区三区老狼 | 色婷婷综合中文久久一本 | yw尤物av无码国产在线观看 | 成在人线av无码免观看麻豆 | 狠狠综合久久久久综合网 | 黑人粗大猛烈进出高潮视频 | 国产欧美亚洲精品a | 麻花豆传媒剧国产免费mv在线 | 无码国产激情在线观看 | 久久久精品成人免费观看 | 精品久久久久久人妻无码中文字幕 | 国产亚洲tv在线观看 | 55夜色66夜色国产精品视频 | 丝袜美腿亚洲一区二区 | 久久人人爽人人爽人人片av高清 | 色噜噜亚洲男人的天堂 | 精品国产av色一区二区深夜久久 | av无码不卡在线观看免费 | 亚洲成a人片在线观看无码3d | 草草网站影院白丝内射 | 国产在线aaa片一区二区99 | 一个人免费观看的www视频 | 久久久久久久久蜜桃 | 亚洲欧洲中文日韩av乱码 | 少妇邻居内射在线 | 免费网站看v片在线18禁无码 | 国产av一区二区精品久久凹凸 | 亚洲 欧美 激情 小说 另类 | 亚洲成av人片在线观看无码不卡 | 国产精品怡红院永久免费 | 久热国产vs视频在线观看 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 麻豆成人精品国产免费 | 好男人www社区 | 亚洲国产欧美国产综合一区 | 免费无码一区二区三区蜜桃大 | 300部国产真实乱 | 国产肉丝袜在线观看 | 日本饥渴人妻欲求不满 | av无码电影一区二区三区 | 永久免费观看国产裸体美女 | 国产精品高潮呻吟av久久4虎 | 扒开双腿吃奶呻吟做受视频 | 国产又爽又黄又刺激的视频 | 大地资源网第二页免费观看 | 国产亚洲精品精品国产亚洲综合 | 性欧美熟妇videofreesex | 西西人体www44rt大胆高清 | 成 人影片 免费观看 | 妺妺窝人体色www婷婷 | 久久精品99久久香蕉国产色戒 | 免费看男女做好爽好硬视频 | 中文字幕久久久久人妻 | 午夜熟女插插xx免费视频 | 亚洲色偷偷男人的天堂 | 亚洲国产一区二区三区在线观看 | 亚洲爆乳大丰满无码专区 | 人妻少妇精品视频专区 | 男女猛烈xx00免费视频试看 | 日韩视频 中文字幕 视频一区 | 午夜福利一区二区三区在线观看 | 亚洲 日韩 欧美 成人 在线观看 | 日韩人妻无码中文字幕视频 | 国产精品久久久 | 少妇性l交大片 | 亚洲伊人久久精品影院 | 国产精品久久久久无码av色戒 | 成人无码视频在线观看网站 | 欧美精品免费观看二区 | 无遮挡啪啪摇乳动态图 | 亚洲成av人片在线观看无码不卡 | 激情人妻另类人妻伦 | 久久精品成人欧美大片 | 亚洲色在线无码国产精品不卡 | 三级4级全黄60分钟 | 久久精品国产一区二区三区肥胖 | 久久精品女人天堂av免费观看 | 在教室伦流澡到高潮hnp视频 | 日本xxxx色视频在线观看免费 | 成人毛片一区二区 | 精品水蜜桃久久久久久久 | 无遮挡啪啪摇乳动态图 | av人摸人人人澡人人超碰下载 | 给我免费的视频在线观看 | 日韩少妇白浆无码系列 | 国产女主播喷水视频在线观看 | 狠狠色欧美亚洲狠狠色www | 97se亚洲精品一区 | 国产免费无码一区二区视频 | 永久免费观看国产裸体美女 | 四虎国产精品一区二区 | 国产手机在线αⅴ片无码观看 | 国产精品爱久久久久久久 | 人妻人人添人妻人人爱 | 麻豆av传媒蜜桃天美传媒 | 性欧美熟妇videofreesex | 妺妺窝人体色www在线小说 | 亚洲の无码国产の无码影院 | 天天av天天av天天透 | 啦啦啦www在线观看免费视频 | 老熟妇乱子伦牲交视频 | 永久免费观看美女裸体的网站 | 欧洲极品少妇 | 亚洲精品久久久久avwww潮水 | 国产9 9在线 | 中文 | 国产手机在线αⅴ片无码观看 | 国产精品美女久久久网av | 中文字幕 亚洲精品 第1页 | 亚洲精品一区二区三区在线观看 | 国产九九九九九九九a片 | 成人性做爰aaa片免费看 | 午夜精品久久久久久久 | 大色综合色综合网站 | 99久久人妻精品免费二区 | 精品国产福利一区二区 | 国产av无码专区亚洲a∨毛片 | 国产美女精品一区二区三区 | 亚洲成av人综合在线观看 | 国产精品-区区久久久狼 | 色诱久久久久综合网ywww | 色欲综合久久中文字幕网 | 亚洲日本在线电影 | 色欲人妻aaaaaaa无码 | 亚洲综合色区中文字幕 | 狂野欧美性猛交免费视频 | 国产精品内射视频免费 | 国产97人人超碰caoprom | 亚洲国产精品久久久天堂 | 日韩av无码一区二区三区不卡 | 性色欲情网站iwww九文堂 | 欧洲美熟女乱又伦 | 精品久久久中文字幕人妻 | 精品国产一区二区三区av 性色 | 色婷婷综合激情综在线播放 | 久久精品国产99久久6动漫 | 国产偷自视频区视频 | 99精品视频在线观看免费 | 亚洲人成网站免费播放 | 色综合久久中文娱乐网 | 中文无码精品a∨在线观看不卡 | 日韩精品一区二区av在线 | 少妇被粗大的猛进出69影院 | 中文无码精品a∨在线观看不卡 | 无码人妻av免费一区二区三区 | 国产av久久久久精东av | 欧美人妻一区二区三区 | www成人国产高清内射 | 成 人 免费观看网站 | 亚洲精品久久久久久一区二区 | 国产精品无码久久av | 玩弄人妻少妇500系列视频 | 小泽玛莉亚一区二区视频在线 | 高潮毛片无遮挡高清免费 | 狠狠色噜噜狠狠狠7777奇米 | 国产精品久久久久久亚洲影视内衣 | 丰满人妻精品国产99aⅴ | 午夜无码区在线观看 | 少妇人妻大乳在线视频 | 中文字幕无码免费久久9一区9 | 少妇无码av无码专区在线观看 | 亚洲国产精品久久人人爱 | 亚洲精品一区二区三区大桥未久 | 无码人妻出轨黑人中文字幕 | 国产无av码在线观看 | 亚洲国产精品毛片av不卡在线 | 丰满少妇人妻久久久久久 | 老熟女乱子伦 | 黑人粗大猛烈进出高潮视频 | 俄罗斯老熟妇色xxxx | 高清不卡一区二区三区 | 久久久久se色偷偷亚洲精品av | 丝袜 中出 制服 人妻 美腿 | 国内少妇偷人精品视频免费 | 国产精品高潮呻吟av久久 | 99视频精品全部免费免费观看 | 一本精品99久久精品77 | 久久久久人妻一区精品色欧美 | 国内精品久久久久久中文字幕 | 无码人妻久久一区二区三区不卡 | 国产亚洲欧美日韩亚洲中文色 | 国产性生大片免费观看性 | 天天拍夜夜添久久精品大 | 人人澡人摸人人添 | 麻豆国产97在线 | 欧洲 | 强伦人妻一区二区三区视频18 | 水蜜桃色314在线观看 | 伊在人天堂亚洲香蕉精品区 | 午夜无码人妻av大片色欲 | 麻豆av传媒蜜桃天美传媒 | 国产两女互慰高潮视频在线观看 | 人人妻人人澡人人爽欧美精品 | 久久国产自偷自偷免费一区调 | 国色天香社区在线视频 | 日本又色又爽又黄的a片18禁 | 青春草在线视频免费观看 | 中文字幕无码日韩专区 | 3d动漫精品啪啪一区二区中 | 少妇久久久久久人妻无码 | 99精品国产综合久久久久五月天 | aⅴ在线视频男人的天堂 | 中文字幕av日韩精品一区二区 | 久久99精品久久久久婷婷 | 日本www一道久久久免费榴莲 | 亚洲成av人片在线观看无码不卡 | 又粗又大又硬毛片免费看 | 亚洲色大成网站www | 东京一本一道一二三区 | 在线观看欧美一区二区三区 | 久久精品99久久香蕉国产色戒 | 内射巨臀欧美在线视频 | 精品国产国产综合精品 | 内射巨臀欧美在线视频 | 最近中文2019字幕第二页 | 88国产精品欧美一区二区三区 | 小泽玛莉亚一区二区视频在线 | 午夜成人1000部免费视频 | 大色综合色综合网站 | 亚洲成av人综合在线观看 | 日韩精品一区二区av在线 | 亚洲中文字幕在线无码一区二区 | 久在线观看福利视频 | 久久亚洲中文字幕无码 | 老司机亚洲精品影院 | 国产三级久久久精品麻豆三级 | 国产精品久久福利网站 | 人人妻人人澡人人爽人人精品 | 在线天堂新版最新版在线8 | 真人与拘做受免费视频一 | 99麻豆久久久国产精品免费 | 日本欧美一区二区三区乱码 | 撕开奶罩揉吮奶头视频 | 天堂一区人妻无码 | 欧美激情综合亚洲一二区 | 一本久道久久综合婷婷五月 | 人妻无码αv中文字幕久久琪琪布 | 领导边摸边吃奶边做爽在线观看 | 女人被男人躁得好爽免费视频 | 中文字幕久久久久人妻 | 装睡被陌生人摸出水好爽 | 在线播放无码字幕亚洲 | 国产 浪潮av性色四虎 | 内射后入在线观看一区 | 国产成人精品三级麻豆 | 色情久久久av熟女人妻网站 | 久久综合久久自在自线精品自 | 无码av中文字幕免费放 | 麻豆精产国品 | 六十路熟妇乱子伦 | 国产免费无码一区二区视频 | 久久久久久久人妻无码中文字幕爆 | 亚洲日韩av一区二区三区四区 | 日日摸夜夜摸狠狠摸婷婷 | 欧美性猛交内射兽交老熟妇 | 亚洲国产精品美女久久久久 | 西西人体www44rt大胆高清 | 对白脏话肉麻粗话av | 日日鲁鲁鲁夜夜爽爽狠狠 | 丁香花在线影院观看在线播放 | 国产精品嫩草久久久久 | 亚洲一区二区三区偷拍女厕 | 亚洲国产一区二区三区在线观看 | 一本久久a久久精品vr综合 | 啦啦啦www在线观看免费视频 | 97精品人妻一区二区三区香蕉 | 蜜臀av无码人妻精品 | 日日噜噜噜噜夜夜爽亚洲精品 | 亚洲精品一区二区三区在线 | 丰满少妇人妻久久久久久 | 红桃av一区二区三区在线无码av | 精品久久久无码中文字幕 | 精品国产青草久久久久福利 | 亚洲日韩精品欧美一区二区 | 亚洲va欧美va天堂v国产综合 | 爽爽影院免费观看 | 久久婷婷五月综合色国产香蕉 | 国产精品丝袜黑色高跟鞋 | 欧美亚洲国产一区二区三区 | 牲欲强的熟妇农村老妇女视频 | 成人综合网亚洲伊人 | 狠狠色噜噜狠狠狠狠7777米奇 | 国产欧美熟妇另类久久久 | 欧美性生交活xxxxxdddd | 亚洲色无码一区二区三区 | 欧美成人午夜精品久久久 | 亚洲色在线无码国产精品不卡 | 亚洲精品一区三区三区在线观看 | 欧美乱妇无乱码大黄a片 | 欧美三级a做爰在线观看 | 色综合天天综合狠狠爱 | 亚洲中文无码av永久不收费 | 免费中文字幕日韩欧美 | 国产香蕉尹人综合在线观看 | 国产网红无码精品视频 | 98国产精品综合一区二区三区 | 成人综合网亚洲伊人 | 色一情一乱一伦一区二区三欧美 | 老太婆性杂交欧美肥老太 | 日韩精品乱码av一区二区 | 国产婷婷色一区二区三区在线 | 国产麻豆精品一区二区三区v视界 | 国产又爽又猛又粗的视频a片 | 日产国产精品亚洲系列 | 国产成人亚洲综合无码 | 精品久久久无码中文字幕 | 性欧美疯狂xxxxbbbb | 精品国精品国产自在久国产87 | 久久国产36精品色熟妇 | 国产精品无码mv在线观看 | 国产精品久久久 | 麻花豆传媒剧国产免费mv在线 | 中文字幕乱码中文乱码51精品 | 国产农村妇女高潮大叫 | 国产成人无码午夜视频在线观看 | 老头边吃奶边弄进去呻吟 | 野外少妇愉情中文字幕 | 中文字幕乱妇无码av在线 | 亚洲精品欧美二区三区中文字幕 | 中文字幕 人妻熟女 | 国产精品久久久午夜夜伦鲁鲁 | 国产精品99久久精品爆乳 | 国产性生大片免费观看性 | 欧美日本免费一区二区三区 | 亚洲精品国偷拍自产在线观看蜜桃 | 在线播放无码字幕亚洲 | 无码免费一区二区三区 | 久9re热视频这里只有精品 | 少妇无码一区二区二三区 | 婷婷五月综合缴情在线视频 | 国内少妇偷人精品视频免费 | 天天做天天爱天天爽综合网 | 牛和人交xxxx欧美 | 亚洲中文字幕无码一久久区 | 午夜福利试看120秒体验区 | 国产黄在线观看免费观看不卡 | 精品国产一区二区三区四区 | 夜夜躁日日躁狠狠久久av | 东北女人啪啪对白 | 无码一区二区三区在线观看 | 性欧美videos高清精品 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 色综合久久88色综合天天 | 毛片内射-百度 | 成人欧美一区二区三区黑人 | 一本久道久久综合婷婷五月 | yw尤物av无码国产在线观看 | 国产人妻精品一区二区三区不卡 | a片免费视频在线观看 | 亚洲中文字幕在线观看 | 国产午夜精品一区二区三区嫩草 | 国产又粗又硬又大爽黄老大爷视 | 蜜桃无码一区二区三区 | 精品无码国产一区二区三区av | 亚洲爆乳精品无码一区二区三区 | 久久www免费人成人片 | 免费人成在线视频无码 | 少妇人妻大乳在线视频 | 亚洲国产精品久久久天堂 | 少妇高潮一区二区三区99 | 双乳奶水饱满少妇呻吟 | 日韩精品无码一本二本三本色 | 中文字幕日韩精品一区二区三区 | av在线亚洲欧洲日产一区二区 | 久久国内精品自在自线 | 一个人看的视频www在线 | 亚洲乱码中文字幕在线 | 亚洲自偷精品视频自拍 | 国产精品亚洲五月天高清 | 黑人巨大精品欧美黑寡妇 | 无码吃奶揉捏奶头高潮视频 | 久久久精品456亚洲影院 | 精品人妻人人做人人爽夜夜爽 | 欧美熟妇另类久久久久久不卡 | 久久久国产一区二区三区 | 樱花草在线播放免费中文 | 麻豆果冻传媒2021精品传媒一区下载 | 久久精品国产99久久6动漫 | 国产精品久久久av久久久 | 国产成人精品视频ⅴa片软件竹菊 | 性色欲网站人妻丰满中文久久不卡 | 国产九九九九九九九a片 | 国产欧美熟妇另类久久久 | 九九久久精品国产免费看小说 | 男女超爽视频免费播放 | 特级做a爰片毛片免费69 | 丰满少妇人妻久久久久久 | 内射老妇bbwx0c0ck | 亚洲精品鲁一鲁一区二区三区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 最新国产麻豆aⅴ精品无码 | 全黄性性激高免费视频 | 久久久久久av无码免费看大片 | 久久久久久九九精品久 | 国产欧美亚洲精品a | 牲欲强的熟妇农村老妇女 | 亚洲一区二区三区 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 亚洲国产成人a精品不卡在线 | 人妻少妇精品视频专区 | 亚洲色欲色欲欲www在线 | 18禁黄网站男男禁片免费观看 | 亚洲成色在线综合网站 | 精品国产一区av天美传媒 | 国产三级久久久精品麻豆三级 | 亚洲人成影院在线无码按摩店 | 久久99精品久久久久婷婷 | 国产亚洲精品精品国产亚洲综合 | 给我免费的视频在线观看 | 久久精品国产99久久6动漫 | 国产三级久久久精品麻豆三级 | 三上悠亚人妻中文字幕在线 | 特黄特色大片免费播放器图片 | 蜜臀av在线播放 久久综合激激的五月天 | 丝袜人妻一区二区三区 | 2020最新国产自产精品 | 丰满岳乱妇在线观看中字无码 | 日日摸天天摸爽爽狠狠97 | 色综合久久久无码中文字幕 | 无码中文字幕色专区 | 久久精品国产大片免费观看 | 久久97精品久久久久久久不卡 | 色 综合 欧美 亚洲 国产 | 久久午夜无码鲁丝片秋霞 | 亚洲码国产精品高潮在线 | 一本加勒比波多野结衣 | 日欧一片内射va在线影院 | 18精品久久久无码午夜福利 | 永久黄网站色视频免费直播 | 日本熟妇人妻xxxxx人hd | 亚洲精品一区二区三区婷婷月 | 西西人体www44rt大胆高清 | 成人免费视频视频在线观看 免费 | 国产精品18久久久久久麻辣 | 高潮毛片无遮挡高清免费视频 | 成人无码视频在线观看网站 | 精品无码国产一区二区三区av | www国产亚洲精品久久网站 | 久久熟妇人妻午夜寂寞影院 | 一本无码人妻在中文字幕免费 | 中文字幕日产无线码一区 | 精品国产福利一区二区 | 亚洲熟妇色xxxxx亚洲 | 精品久久8x国产免费观看 | 人人爽人人澡人人高潮 | 欧美日韩久久久精品a片 | 亚洲中文字幕乱码av波多ji | 亚洲精品鲁一鲁一区二区三区 | 51国偷自产一区二区三区 | 午夜精品久久久久久久 | 国产九九九九九九九a片 | 日本xxxx色视频在线观看免费 | 性欧美大战久久久久久久 | 国产艳妇av在线观看果冻传媒 | aⅴ在线视频男人的天堂 | 真人与拘做受免费视频 | 3d动漫精品啪啪一区二区中 | 女人色极品影院 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产精品毛片一区二区 | 狠狠噜狠狠狠狠丁香五月 | 性色av无码免费一区二区三区 | 精品久久8x国产免费观看 | 给我免费的视频在线观看 | 国产黄在线观看免费观看不卡 | 亚洲精品综合五月久久小说 | 久久久久久久久888 | 国产精品对白交换视频 | 国内精品久久毛片一区二区 | 美女极度色诱视频国产 | 日韩视频 中文字幕 视频一区 | 好男人社区资源 | 综合人妻久久一区二区精品 | 熟妇人妻无乱码中文字幕 | 国产精品久久久久久久影院 | 午夜精品久久久久久久 | 2019午夜福利不卡片在线 | 久久精品中文闷骚内射 | 玩弄中年熟妇正在播放 | 中文字幕色婷婷在线视频 | 2020久久香蕉国产线看观看 | 99久久人妻精品免费二区 | 亚洲熟妇色xxxxx欧美老妇 | 国産精品久久久久久久 | 亚洲欧洲中文日韩av乱码 | 激情亚洲一区国产精品 | 在线精品国产一区二区三区 | 日韩av无码一区二区三区 | 中文字幕亚洲情99在线 | 亚洲中文字幕无码中文字在线 | 国产亚洲欧美在线专区 | 中文字幕无线码免费人妻 | 一本久久a久久精品vr综合 | 国产亚av手机在线观看 | 无遮挡啪啪摇乳动态图 | 成在人线av无码免费 | 两性色午夜视频免费播放 | 亚洲中文字幕乱码av波多ji | 性色欲网站人妻丰满中文久久不卡 | 香港三级日本三级妇三级 | 欧美熟妇另类久久久久久不卡 | 狠狠cao日日穞夜夜穞av | 日韩人妻少妇一区二区三区 | 亚洲伊人久久精品影院 | 色欲久久久天天天综合网精品 | 亚洲码国产精品高潮在线 | 久久无码人妻影院 | 欧美丰满老熟妇xxxxx性 | 色综合久久久无码网中文 | 强开小婷嫩苞又嫩又紧视频 | 亚洲人成影院在线观看 | 亚洲毛片av日韩av无码 | 国产精品办公室沙发 | 精品一二三区久久aaa片 | 国产精品丝袜黑色高跟鞋 | 国产超碰人人爽人人做人人添 | 国产性生大片免费观看性 | 欧美性猛交内射兽交老熟妇 | 亚洲熟悉妇女xxx妇女av | 国产极品视觉盛宴 | 理论片87福利理论电影 | 亚洲日本在线电影 | 丰满人妻精品国产99aⅴ | 久久久中文久久久无码 | 国产国产精品人在线视 | 亚洲国产日韩a在线播放 | 77777熟女视频在线观看 а天堂中文在线官网 | 黑人玩弄人妻中文在线 | 日本精品久久久久中文字幕 | 国产精品久久久一区二区三区 | 国产精品福利视频导航 | 色一情一乱一伦一视频免费看 | 亚洲色欲色欲天天天www | 色五月五月丁香亚洲综合网 | 亚洲熟妇色xxxxx亚洲 | 白嫩日本少妇做爰 | 老子影院午夜精品无码 | 国产福利视频一区二区 | 亚洲中文字幕乱码av波多ji | 久久久www成人免费毛片 | 狠狠cao日日穞夜夜穞av | 玩弄人妻少妇500系列视频 | 麻豆国产人妻欲求不满谁演的 | 中文字幕无码av激情不卡 | 亚洲一区二区三区香蕉 | 无遮挡国产高潮视频免费观看 | 天天综合网天天综合色 | 丰满妇女强制高潮18xxxx | 久久久久se色偷偷亚洲精品av | 精品无码成人片一区二区98 | 国产真实伦对白全集 | 老头边吃奶边弄进去呻吟 | 日本一本二本三区免费 | 免费人成网站视频在线观看 | 精品亚洲成av人在线观看 | 国产成人无码专区 | 国产精品美女久久久网av | 无码人妻丰满熟妇区五十路百度 | 国产成人一区二区三区在线观看 | 精品欧洲av无码一区二区三区 | 成人性做爰aaa片免费看不忠 | 国产精品久久久久久亚洲影视内衣 | 少妇厨房愉情理9仑片视频 | 九一九色国产 | 嫩b人妻精品一区二区三区 | 初尝人妻少妇中文字幕 | 日本一区二区三区免费播放 | 人妻少妇被猛烈进入中文字幕 | 国产人妻精品一区二区三区不卡 | 免费无码午夜福利片69 | 理论片87福利理论电影 | 97精品国产97久久久久久免费 | 亚洲乱亚洲乱妇50p | 天天拍夜夜添久久精品 | 在线天堂新版最新版在线8 | a在线观看免费网站大全 | 一区二区传媒有限公司 | 欧美性猛交xxxx富婆 | 四虎国产精品一区二区 | 国产一区二区三区精品视频 | 4hu四虎永久在线观看 | 在线视频网站www色 | 国内精品久久毛片一区二区 | 久久99精品久久久久久动态图 | 亚洲精品国产第一综合99久久 | 性欧美牲交xxxxx视频 | 少女韩国电视剧在线观看完整 | 超碰97人人做人人爱少妇 | 久久久久成人片免费观看蜜芽 | 欧美精品无码一区二区三区 | 无码免费一区二区三区 | 在线观看国产一区二区三区 | 亚洲一区二区三区播放 | 亚洲性无码av中文字幕 | 久久久久免费精品国产 | 国产综合久久久久鬼色 | 草草网站影院白丝内射 | 国产国产精品人在线视 | 亚洲综合无码一区二区三区 | 亚洲一区二区三区在线观看网站 | 亚洲 日韩 欧美 成人 在线观看 | 波多野结衣一区二区三区av免费 | 亚洲第一网站男人都懂 | 精品aⅴ一区二区三区 | 亚洲无人区午夜福利码高清完整版 | 日日噜噜噜噜夜夜爽亚洲精品 | 婷婷五月综合激情中文字幕 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | av在线亚洲欧洲日产一区二区 | 亚洲va欧美va天堂v国产综合 | 午夜精品久久久久久久 | 国内精品九九久久久精品 | 99久久婷婷国产综合精品青草免费 | 无码精品人妻一区二区三区av | 亚洲第一网站男人都懂 | 色综合视频一区二区三区 | 性史性农村dvd毛片 | 领导边摸边吃奶边做爽在线观看 | 激情国产av做激情国产爱 | 国产高清不卡无码视频 | 国产成人无码av片在线观看不卡 | 一区二区传媒有限公司 | 亚洲码国产精品高潮在线 | 久久精品丝袜高跟鞋 | 少妇被黑人到高潮喷出白浆 | 亚洲成av人影院在线观看 | 一本久道高清无码视频 | 欧美色就是色 | 国产电影无码午夜在线播放 | 精品无码国产自产拍在线观看蜜 | 国产人妻人伦精品1国产丝袜 | 国产美女精品一区二区三区 | 精品人妻中文字幕有码在线 | 人人爽人人澡人人高潮 | 成人亚洲精品久久久久软件 | 国产精品无码永久免费888 | 亚洲精品一区二区三区婷婷月 | 国产一区二区三区四区五区加勒比 | 伊人久久大香线蕉亚洲 | 国产精品igao视频网 | 2019午夜福利不卡片在线 | 无人区乱码一区二区三区 | 日本免费一区二区三区最新 | 亚洲色偷偷男人的天堂 | 婷婷色婷婷开心五月四房播播 | 伊人色综合久久天天小片 | 骚片av蜜桃精品一区 | 熟妇女人妻丰满少妇中文字幕 | 欧美三级a做爰在线观看 | 国产亚洲精品久久久久久 | 亚洲一区二区三区播放 | 在线天堂新版最新版在线8 | 伊人久久大香线蕉av一区二区 | 国产乱人偷精品人妻a片 | 日日天日日夜日日摸 | 亚洲国产精品一区二区第一页 | 欧美人与动性行为视频 | 亚洲色大成网站www | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 日韩人妻系列无码专区 | 成人欧美一区二区三区黑人免费 | 午夜精品久久久内射近拍高清 | 国产无遮挡又黄又爽免费视频 | av小次郎收藏 | 国产午夜福利100集发布 | 国产成人精品无码播放 | 久久综合狠狠综合久久综合88 | 偷窥日本少妇撒尿chinese | 亚洲欧美日韩成人高清在线一区 | 狠狠色欧美亚洲狠狠色www | 中文字幕无码免费久久9一区9 | 国产艳妇av在线观看果冻传媒 | 麻豆md0077饥渴少妇 | 色综合久久88色综合天天 | 学生妹亚洲一区二区 | 久久久精品成人免费观看 | 99久久久无码国产aaa精品 | 中文毛片无遮挡高清免费 | 色 综合 欧美 亚洲 国产 | 亚洲欧美国产精品久久 | av无码电影一区二区三区 | 伊人久久大香线蕉av一区二区 | 日韩亚洲欧美中文高清在线 | 一区二区三区高清视频一 | 六十路熟妇乱子伦 | 日日躁夜夜躁狠狠躁 | 在线精品亚洲一区二区 | 国产高清不卡无码视频 | 国内揄拍国内精品人妻 | 麻豆国产人妻欲求不满谁演的 | 亚洲成a人片在线观看无码3d | 一本大道久久东京热无码av | 狠狠色噜噜狠狠狠7777奇米 | 亚洲精品久久久久久一区二区 | 国产午夜无码视频在线观看 | 国产精品亚洲一区二区三区喷水 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 高潮喷水的毛片 | 午夜无码人妻av大片色欲 | 熟女少妇人妻中文字幕 | 成人试看120秒体验区 | 国产精品久久久久7777 | 欧洲精品码一区二区三区免费看 | 狠狠色噜噜狠狠狠7777奇米 | 日日噜噜噜噜夜夜爽亚洲精品 | 欧美高清在线精品一区 | 欧美 日韩 人妻 高清 中文 | 成人精品天堂一区二区三区 | 无码午夜成人1000部免费视频 | 97久久国产亚洲精品超碰热 | 亚洲自偷自拍另类第1页 | 国产精品久久国产精品99 | 2019nv天堂香蕉在线观看 | 青青草原综合久久大伊人精品 | 夜夜高潮次次欢爽av女 | 女高中生第一次破苞av | 四十如虎的丰满熟妇啪啪 | 亚洲无人区午夜福利码高清完整版 | 波多野结衣高清一区二区三区 | 免费国产成人高清在线观看网站 | 久久精品国产99久久6动漫 | 精品国产一区av天美传媒 | 色婷婷av一区二区三区之红樱桃 | 激情内射日本一区二区三区 | 中文字幕无码免费久久99 | 国产亚洲精品久久久久久久 | 亚洲熟熟妇xxxx | 国产内射爽爽大片视频社区在线 | 无码毛片视频一区二区本码 | 国产黄在线观看免费观看不卡 | 国模大胆一区二区三区 | 国产在线精品一区二区三区直播 | 国产精品二区一区二区aⅴ污介绍 | 亚洲精品国产品国语在线观看 | 国产麻豆精品一区二区三区v视界 | 久久97精品久久久久久久不卡 | 一本一道久久综合久久 | 98国产精品综合一区二区三区 | 亚洲第一无码av无码专区 | 色妞www精品免费视频 | 日韩精品无码一区二区中文字幕 | 日本熟妇浓毛 | 欧美国产亚洲日韩在线二区 | 中文字幕色婷婷在线视频 | 国产三级精品三级男人的天堂 | 国产成人精品久久亚洲高清不卡 | 人人妻人人澡人人爽精品欧美 | 色综合久久久无码中文字幕 | 欧美激情内射喷水高潮 | 国产精品多人p群无码 | 麻豆果冻传媒2021精品传媒一区下载 | 水蜜桃亚洲一二三四在线 | 久久99精品久久久久久 | 99久久精品无码一区二区毛片 | 久久成人a毛片免费观看网站 | 色窝窝无码一区二区三区色欲 | 日日天干夜夜狠狠爱 | 国产无遮挡吃胸膜奶免费看 | 2019午夜福利不卡片在线 | 亚洲一区二区三区四区 | 亚洲 a v无 码免 费 成 人 a v | 嫩b人妻精品一区二区三区 | 超碰97人人射妻 | 女高中生第一次破苞av | 18禁止看的免费污网站 | 九九在线中文字幕无码 | 欧美激情一区二区三区成人 | 中文字幕 人妻熟女 | 性欧美videos高清精品 | 欧美精品无码一区二区三区 | 在线欧美精品一区二区三区 | 久久精品人妻少妇一区二区三区 | 国产成人无码av片在线观看不卡 | 初尝人妻少妇中文字幕 | 亚洲熟妇色xxxxx亚洲 | 国产精品美女久久久网av | 亚洲日韩av片在线观看 | 欧美精品免费观看二区 | 嫩b人妻精品一区二区三区 | 国产亲子乱弄免费视频 | 国产熟女一区二区三区四区五区 | 国产另类ts人妖一区二区 | 欧美变态另类xxxx | 日韩 欧美 动漫 国产 制服 | 午夜熟女插插xx免费视频 | 国产一区二区三区四区五区加勒比 | 强伦人妻一区二区三区视频18 | 少妇久久久久久人妻无码 | 国产精品无码成人午夜电影 | 久久久久成人精品免费播放动漫 | 日韩欧美群交p片內射中文 | 日日摸夜夜摸狠狠摸婷婷 | 久久成人a毛片免费观看网站 | 国产亚洲tv在线观看 | 无套内谢的新婚少妇国语播放 | 国产色xx群视频射精 | 久久精品国产一区二区三区 | 狠狠色色综合网站 | 亚洲欧洲无卡二区视頻 | 欧美日韩人成综合在线播放 | 中文字幕无码视频专区 | 国产无套粉嫩白浆在线 | 国产情侣作爱视频免费观看 | 天下第一社区视频www日本 | 亚洲精品午夜国产va久久成人 | 亚洲熟妇色xxxxx欧美老妇 | 任你躁在线精品免费 | 亚洲小说春色综合另类 | 高潮毛片无遮挡高清免费视频 | 亚洲精品www久久久 | 亚洲国产欧美国产综合一区 | 综合激情五月综合激情五月激情1 | 思思久久99热只有频精品66 | 久久亚洲a片com人成 | 国产午夜手机精彩视频 | 精品国产成人一区二区三区 | 国产成人综合在线女婷五月99播放 | 亚洲人成网站色7799 | 老太婆性杂交欧美肥老太 | 狠狠躁日日躁夜夜躁2020 | 日产精品高潮呻吟av久久 | 2020最新国产自产精品 | 性做久久久久久久久 | 精品人人妻人人澡人人爽人人 | 亚洲熟悉妇女xxx妇女av | 亚洲精品国产a久久久久久 | 成在人线av无码免费 | 国产又粗又硬又大爽黄老大爷视 | 亚洲天堂2017无码中文 | 国产成人综合在线女婷五月99播放 | 未满小14洗澡无码视频网站 | 婷婷色婷婷开心五月四房播播 | 97久久国产亚洲精品超碰热 | 免费人成在线观看网站 | 熟妇激情内射com | 领导边摸边吃奶边做爽在线观看 | 国语自产偷拍精品视频偷 | 国产熟女一区二区三区四区五区 | 久久aⅴ免费观看 | 国产精品人人妻人人爽 | 亚洲熟妇色xxxxx欧美老妇y | 久久国产精品精品国产色婷婷 | 人妻插b视频一区二区三区 | 人人爽人人爽人人片av亚洲 | 久久久久亚洲精品中文字幕 | 亚洲人亚洲人成电影网站色 | 日韩av无码一区二区三区不卡 | 久久97精品久久久久久久不卡 | 少妇的肉体aa片免费 | 精品一区二区三区波多野结衣 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 色诱久久久久综合网ywww | 国产精品-区区久久久狼 | 中文字幕无码人妻少妇免费 | 国产成人无码区免费内射一片色欲 | 日日摸天天摸爽爽狠狠97 | 色情久久久av熟女人妻网站 | 好爽又高潮了毛片免费下载 | 99精品无人区乱码1区2区3区 | 国产成人精品必看 | 免费无码一区二区三区蜜桃大 | 久久精品国产99精品亚洲 | 亚洲区欧美区综合区自拍区 | 97无码免费人妻超级碰碰夜夜 | 中文精品久久久久人妻不卡 | 亚洲综合伊人久久大杳蕉 | 国产后入清纯学生妹 | 欧美 日韩 亚洲 在线 | 亚洲综合精品香蕉久久网 | 欧美激情一区二区三区成人 | av无码不卡在线观看免费 | 精品国产精品久久一区免费式 | 又湿又紧又大又爽a视频国产 | 欧美国产日韩久久mv | 内射老妇bbwx0c0ck | 成人无码精品一区二区三区 | 亚洲欧美色中文字幕在线 | 国产97人人超碰caoprom | 又大又硬又黄的免费视频 | 女人和拘做爰正片视频 | 日韩少妇内射免费播放 | 99精品无人区乱码1区2区3区 | 人人澡人摸人人添 | 俺去俺来也www色官网 | 亚洲一区二区观看播放 | 久久综合给合久久狠狠狠97色 | 国产成人精品久久亚洲高清不卡 | 国产在线aaa片一区二区99 | 老子影院午夜伦不卡 | 国产精品二区一区二区aⅴ污介绍 | 在线天堂新版最新版在线8 | 精品厕所偷拍各类美女tp嘘嘘 | 精品无码成人片一区二区98 | 一本久道久久综合狠狠爱 | 波多野结衣高清一区二区三区 | 狠狠色色综合网站 | 欧美激情一区二区三区成人 | 国产黑色丝袜在线播放 | 无码人妻丰满熟妇区五十路百度 | 亚洲乱亚洲乱妇50p | 国产精品嫩草久久久久 | 三上悠亚人妻中文字幕在线 | 蜜臀av在线播放 久久综合激激的五月天 | 国产在线一区二区三区四区五区 | 亚洲の无码国产の无码影院 | 最新版天堂资源中文官网 | 99精品久久毛片a片 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产人妻精品一区二区三区不卡 | 亚洲人交乣女bbw | 久久久精品456亚洲影院 | 人人澡人人透人人爽 | 国产无av码在线观看 | 欧美三级不卡在线观看 | 天堂а√在线中文在线 | 在线成人www免费观看视频 | 国产国产精品人在线视 | 午夜理论片yy44880影院 | 精品国产精品久久一区免费式 | 久久久久人妻一区精品色欧美 | √8天堂资源地址中文在线 | 欧美日韩视频无码一区二区三 | 国产麻豆精品一区二区三区v视界 | 激情五月综合色婷婷一区二区 | 久久伊人色av天堂九九小黄鸭 | 欧美乱妇无乱码大黄a片 | 成人女人看片免费视频放人 | 亚洲精品成人av在线 | 国产精品久久久久久亚洲影视内衣 | 精品国产精品久久一区免费式 | 无码任你躁久久久久久久 | 亚洲中文字幕无码中字 | 国产成人精品无码播放 | 亚洲国产精品一区二区第一页 | 无码国内精品人妻少妇 | 免费中文字幕日韩欧美 | 国产女主播喷水视频在线观看 | 国产网红无码精品视频 | 欧美精品无码一区二区三区 | 无码国内精品人妻少妇 | 国产成人一区二区三区在线观看 | 成人精品视频一区二区三区尤物 | aa片在线观看视频在线播放 | 亚洲国产成人av在线观看 | 日本熟妇浓毛 | 又大又紧又粉嫩18p少妇 | 国产精品手机免费 | 欧美刺激性大交 | 中文无码成人免费视频在线观看 | 亚洲 欧美 激情 小说 另类 | 男女下面进入的视频免费午夜 | 丰腴饱满的极品熟妇 | 国产偷抇久久精品a片69 | 亚洲精品成人福利网站 | 少妇厨房愉情理9仑片视频 | 永久免费观看美女裸体的网站 | 人妻少妇精品无码专区二区 | 国产熟妇高潮叫床视频播放 | 在线观看国产一区二区三区 | 亚洲熟妇色xxxxx欧美老妇y | 欧美国产亚洲日韩在线二区 | 红桃av一区二区三区在线无码av | 人人爽人人澡人人人妻 | 国内精品久久毛片一区二区 | 午夜精品久久久内射近拍高清 | 国产精品久久久久9999小说 | 国产猛烈高潮尖叫视频免费 | 欧美日韩在线亚洲综合国产人 | 成 人 网 站国产免费观看 | 日韩无套无码精品 | 国产人妻精品午夜福利免费 | 国产香蕉97碰碰久久人人 | 色婷婷av一区二区三区之红樱桃 | 亚洲小说春色综合另类 | 免费男性肉肉影院 | 亚洲综合久久一区二区 | 激情亚洲一区国产精品 | aⅴ亚洲 日韩 色 图网站 播放 | 国产精品怡红院永久免费 | 亚洲天堂2017无码 | 伊人久久大香线蕉午夜 | 国产精品鲁鲁鲁 | 国产激情一区二区三区 | 精品无人区无码乱码毛片国产 | 亚洲一区二区三区播放 | 国产又粗又硬又大爽黄老大爷视 | 欧美大屁股xxxxhd黑色 | 国产97人人超碰caoprom | 国产色视频一区二区三区 | 一个人看的视频www在线 | 国产xxx69麻豆国语对白 | 日本欧美一区二区三区乱码 | 日本xxxx色视频在线观看免费 | 久久久精品456亚洲影院 | 久久精品国产日本波多野结衣 | 人妻有码中文字幕在线 | 日日噜噜噜噜夜夜爽亚洲精品 | 蜜桃av抽搐高潮一区二区 | 日本肉体xxxx裸交 | 日本一本二本三区免费 | www成人国产高清内射 | 午夜无码人妻av大片色欲 | 少妇人妻av毛片在线看 | 国产精品永久免费视频 | 撕开奶罩揉吮奶头视频 | 丰满诱人的人妻3 | 亚洲色欲色欲欲www在线 | 日本一区二区三区免费播放 | 国产成人一区二区三区在线观看 | 人妻天天爽夜夜爽一区二区 | 精品国产一区二区三区四区在线看 | 人妻中文无码久热丝袜 | 国产美女极度色诱视频www | 午夜精品一区二区三区的区别 | 国产精品久久精品三级 | 久久久精品欧美一区二区免费 | 亚洲一区av无码专区在线观看 | 亚洲成av人片在线观看无码不卡 | 天堂а√在线地址中文在线 | 最近的中文字幕在线看视频 | 强伦人妻一区二区三区视频18 | 久久综合给合久久狠狠狠97色 | 98国产精品综合一区二区三区 | 无码国产乱人伦偷精品视频 | 中文字幕人妻丝袜二区 | 精品亚洲韩国一区二区三区 | 香蕉久久久久久av成人 | 99er热精品视频 | 国产精品人人妻人人爽 | 成人av无码一区二区三区 | 又大又硬又爽免费视频 | 午夜福利试看120秒体验区 | 成 人 免费观看网站 | 国产女主播喷水视频在线观看 | 久久99热只有频精品8 | 国产亚洲人成在线播放 | 久久精品丝袜高跟鞋 | 一本精品99久久精品77 | 亚洲国产一区二区三区在线观看 | 国产猛烈高潮尖叫视频免费 | 2019午夜福利不卡片在线 | 呦交小u女精品视频 | 成人三级无码视频在线观看 | 成人欧美一区二区三区黑人免费 | 日韩欧美成人免费观看 | 中文字幕乱妇无码av在线 | 国产女主播喷水视频在线观看 | 国产亚洲欧美在线专区 | 国产激情综合五月久久 | 最新版天堂资源中文官网 | 免费播放一区二区三区 | 色婷婷综合激情综在线播放 | 性开放的女人aaa片 | 国产精品99久久精品爆乳 | 西西人体www44rt大胆高清 | 日本饥渴人妻欲求不满 | 激情国产av做激情国产爱 | 无码人妻av免费一区二区三区 | 午夜精品一区二区三区在线观看 | 国产精品久久久午夜夜伦鲁鲁 | 久久亚洲精品中文字幕无男同 | 国产成人av免费观看 | 国产精品久久久一区二区三区 | 国产av一区二区三区最新精品 | 初尝人妻少妇中文字幕 | 少妇无码av无码专区在线观看 | 性欧美熟妇videofreesex | 婷婷五月综合缴情在线视频 | 午夜免费福利小电影 | 国产av人人夜夜澡人人爽麻豆 | 国产美女精品一区二区三区 | 97久久精品无码一区二区 | 国产亚洲欧美在线专区 | 人人妻人人澡人人爽人人精品浪潮 | 久久99精品国产.久久久久 | 国产在线无码精品电影网 | 日韩人妻无码一区二区三区久久99 | 乌克兰少妇xxxx做受 | 又色又爽又黄的美女裸体网站 | 欧美freesex黑人又粗又大 | 国产一区二区三区精品视频 | 久久综合久久自在自线精品自 | 无码人妻久久一区二区三区不卡 | 牲欲强的熟妇农村老妇女 | 国产成人无码av在线影院 | a片在线免费观看 | 精品国产成人一区二区三区 | 欧美性猛交xxxx富婆 | 粉嫩少妇内射浓精videos | 亚洲 欧美 激情 小说 另类 | av无码电影一区二区三区 | 亚洲另类伦春色综合小说 | 日欧一片内射va在线影院 | 亚洲精品一区二区三区在线观看 | 国产精品va在线观看无码 | 国产福利视频一区二区 | 久久国产劲爆∧v内射 | 中文字幕人妻无码一区二区三区 | 亚洲成色www久久网站 | 精品国产一区二区三区四区在线看 | 成人性做爰aaa片免费看不忠 | 国产精品igao视频网 | 国产亲子乱弄免费视频 | 久久精品国产一区二区三区肥胖 | 国产人妻久久精品二区三区老狼 | 国产片av国语在线观看 | 色综合久久久无码中文字幕 | 波多野42部无码喷潮在线 | 人人妻在人人 | 国产精品欧美成人 | 亚洲一区二区三区在线观看网站 | 亚洲爆乳无码专区 | 欧美激情内射喷水高潮 | 久久久久成人片免费观看蜜芽 | 欧美丰满少妇xxxx性 | 中文字幕人成乱码熟女app | 免费人成在线视频无码 | 国产色xx群视频射精 | 国产精品久久国产三级国 | 熟女少妇在线视频播放 | 国产69精品久久久久app下载 | 亚洲の无码国产の无码影院 | 性欧美videos高清精品 | 99久久人妻精品免费二区 | av在线亚洲欧洲日产一区二区 | 亚洲日韩一区二区 | 18禁止看的免费污网站 | 日韩av无码一区二区三区 | 男人和女人高潮免费网站 | 国产精品18久久久久久麻辣 | 国产在线精品一区二区高清不卡 | 国产在线一区二区三区四区五区 | 亚洲精品国产品国语在线观看 | 国内少妇偷人精品视频 | 色欲av亚洲一区无码少妇 | 日产精品99久久久久久 | 久久99精品久久久久久动态图 | 亚洲精品成人福利网站 | а√天堂www在线天堂小说 | 日日摸日日碰夜夜爽av | 成人精品天堂一区二区三区 | 小泽玛莉亚一区二区视频在线 | 国产做国产爱免费视频 | 亚洲精品国产精品乱码不卡 | 狠狠色欧美亚洲狠狠色www | 欧美日本日韩 | 亚洲日韩精品欧美一区二区 | 亚洲熟女一区二区三区 | 国产午夜亚洲精品不卡下载 | 草草网站影院白丝内射 | 成人片黄网站色大片免费观看 | 女人高潮内射99精品 | 国产熟女一区二区三区四区五区 | 亚洲午夜福利在线观看 | 精品国产一区二区三区四区在线看 | 国产性生大片免费观看性 | 中文字幕无码乱人伦 | 亚洲色大成网站www | 亚洲精品午夜国产va久久成人 | 2019nv天堂香蕉在线观看 | 中文字幕 人妻熟女 | 国产精品亚洲专区无码不卡 | 日韩成人一区二区三区在线观看 | 性欧美videos高清精品 | 欧美刺激性大交 | 国产麻豆精品一区二区三区v视界 | 亚洲精品久久久久avwww潮水 | 亚洲中文字幕av在天堂 | 亚洲精品国产品国语在线观看 | 大地资源网第二页免费观看 | 蜜臀av无码人妻精品 | 中文字幕av伊人av无码av | 久久人人爽人人爽人人片ⅴ | 亚洲成a人片在线观看无码 | 国产精品人人妻人人爽 | 青草视频在线播放 | 狠狠cao日日穞夜夜穞av | 色欲人妻aaaaaaa无码 | 国产69精品久久久久app下载 | 无码乱肉视频免费大全合集 | 国产精品久久久久久久9999 | √天堂资源地址中文在线 | 亚洲人成网站免费播放 | 久久国产精品萌白酱免费 | 中文精品久久久久人妻不卡 | 亚洲国产精品久久久久久 | 狠狠色丁香久久婷婷综合五月 | 综合人妻久久一区二区精品 | 成人免费视频一区二区 | 日本在线高清不卡免费播放 | 在线a亚洲视频播放在线观看 | 国产熟妇高潮叫床视频播放 | 亚洲无人区午夜福利码高清完整版 | 少妇人妻av毛片在线看 | 久久久久久九九精品久 | 亚洲精品一区二区三区在线 | 亚洲成av人片天堂网无码】 | 亚洲欧美国产精品久久 | 亚洲成av人片天堂网无码】 | 俄罗斯老熟妇色xxxx | 国产艳妇av在线观看果冻传媒 | 中文字幕 人妻熟女 | 日本一区二区三区免费高清 | 1000部夫妻午夜免费 | 男女下面进入的视频免费午夜 | 日本精品少妇一区二区三区 | 水蜜桃色314在线观看 | 88国产精品欧美一区二区三区 | 又色又爽又黄的美女裸体网站 | 中文字幕乱码中文乱码51精品 | 日日天干夜夜狠狠爱 | 久久久久成人片免费观看蜜芽 | 亚洲精品一区二区三区在线 |