python opencv轮廓检测_python opencv 来对图片(苹果)的轮廓(最大轮廓进行识别)进行...
import cv2 as cv
import numpy as np
# canny邊緣檢測
def canny_demo(image):
t = 140
canny_output = cv.Canny(image, t, t * 2)
cv.imshow("canny_output", canny_output)
cv.imwrite("D:tupiancanny_output.png", canny_output)
return canny_output
# 讀取圖像
src1 = cv.imread("D:t0.bmp")
src2 = cv.imread("D:t0.bmp")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src1)
# 調用
binary = canny_demo(src2)
# 輪廓發現
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
areas, arclens = [], []for c in range(len(contours)):
# 面積
areas.append(cv.contourArea(contours[c]))
# 周長
arclens.append(cv.arcLength(contours[c], True))
area_id = areas.index(max(areas))
areamax = max(areas)
arclenmax = max(arclens)
# 矩形
rect = cv.minAreaRect(contours[area_id])
cx, cy = rect[0]box = cv.boxPoints(rect)
box = np.int0(box)
# 輪廓描繪
cv.drawContours(src1,[box],0,(0,255,0),2)
cv.circle(src1, (np.int(cx), np.int(cy)), 2, (255, 0, 0), 2, 8, 0)
cv.drawContours(src1, contours, area_id, (0, 0, 255), 2, 8)
cv.putText(src2, "area:" + str(areamax), (50, 50), cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 0), 1)
cv.putText(src2, "arclen:" + str(arclenmax), (50, 90), cv.FONT_HERSHEY_SIMPLEX, .7, (0, 0, 0), 1)
cv.putText(src2, "color:" + 'red' , (230,170), cv.FONT_HERSHEY_SCRIPT_SIMPLEX, .7, (0, 0, 0), 1)
# 圖像顯示
cv.imshow("contours_analysis", src1)
cv.imshow('', src2)
cv.imwrite("D:tipianarea.png", src1)
cv.waitKey(0)
# cv.destroyAllWindows()
總結
以上是生活随笔為你收集整理的python opencv轮廓检测_python opencv 来对图片(苹果)的轮廓(最大轮廓进行识别)进行...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 基于医疗RFID手术用品智能柜管理应用方
- 下一篇: 1688-cat_get - 获得168