时间复杂度O(n)什么意思
時間復雜度
算法分析
同一問題可用不同算法解決,而一個算法的質量優劣將影響到算法乃至程序的效率。算法分析的目的在于選擇合適算法和改進算法。一個算法的評價主要從時間復雜度和空間復雜度來考慮。
一、時間復雜度
(1)時間頻度
一個算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個算法都上機測試,只需知道哪個算法花費的時間多,哪個算法花費的時間少就可以了。并且一個算法花費的時間與算法中語句的執行次數成正比例,哪個算法中語句執行次數多,它花費時間就多。一個算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
(2)時間復雜度
在剛才提到的時間頻度中,n稱為問題的規模,當n不斷變化時,時間頻度T(n)也會不斷變化。但有時我們想知道它變化時呈現什么規律。為此,我們引入時間復雜度概念。
一般情況下,算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,若有某個輔助函數f(n),使得當n趨近于無窮大時,T(n)/f(n)的極限值為不等于零的常數,則稱f(n)是T(n)的同數量級函數。記作T(n)=O(f(n)),稱O(f(n)) 為算法的漸進時間復雜度,簡稱時間復雜度。
在各種不同算法中,若算法中語句執行次數為一個常數,則時間復雜度為O(1),另外,在時間頻度不相同時,時間復雜度有可能相同,如T(n)=n2+3n+4與T(n)=4n2+2n+1它們的頻度不同,但時間復雜度相同,都為O(n2)。
按數量級遞增排列,常見的時間復雜度有:
常數階O(1),對數階O(log2n),線性階O(n),
線性對數階O(nlog2n),平方階O(n2),立方階O(n3),…,
k次方階O(nk),指數階O(2n)。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,算法的執行效率越低。
2、空間復雜度
與時間復雜度類似,空間復雜度是指算法在計算機內執行時所需存儲空間的度量。記作:
S(n)=O(f(n))
我們一般所討論的是除正常占用內存開銷外的輔助存儲單元規模
二、常見算法時間復雜度:
O(1): 表示算法的運行時間為常量
O(n): 表示該算法是線性算法
O(㏒2n): 二分查找算法
O(n2): 對數組進行排序的各種簡單算法,例如直接插入排序的算法。
O(n3): 做兩個n階矩陣的乘法運算
O(2n): 求具有n個元素集合的所有子集的算法
O(n!): 求具有N個元素的全排列的算法
優<---------------------------<劣
O(1)<O(㏒2n)<O(n)<O(n2)<O(2n)
時間復雜度按數量級遞增排列依次為:常數階O(1)、對數階O(log2n)、線性階O(n)、線性對數階O(nlog2n)、平方階O(n2)、立方階O(n3)、……k次方階O(nk)、指數階O(2n)。
三、算法的時間復雜度(計算實例)
定義:如果一個問題的規模是n,解這一問題的某一算法所需要的時間為T(n),它是n的某一函數 T(n)稱為這一算法的“時間復雜性”。
當輸入量n逐漸加大時,時間復雜性的極限情形稱為算法的“漸近時間復雜性”。
我們常用大O表示法表示時間復雜性,注意它是某一個算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但并不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,一個問題本身也有它的復雜性,如果某個算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的算法是最佳算法。
“大O記法”:在這種描述中使用的基本參數是 n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的“O”表示量級 (order),比如說“二分檢索是 O(logn)的”,也就是說它需要“通過logn量級的步驟去檢索一個規模為n的數組”記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比于 f(n)的速度增長。
這種漸進估計對算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)算法在n較小的情況下可能比一個高附加代價的 O(nlogn)算法運行得更快。當然,隨著n足夠大以后,具有較慢上升函數的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。算法的時間復雜度為常數階,記作T(n)=O(1)。如果算法的執行時 間不隨著問題規模n的增加而增長,即使算法中有上千條語句,其執行時間也不過是一個較大的常數。此類算法的時間復雜度是O(1)。
O(n^2)
2.1. 交換i和j的內容
sum=0; (一次)for(i=1;i<=n;i++) (n次 )for(j=1;j<=n;j++) (n^2次 )sum++; (n^2次 )解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++){y=y+1; ① for (j=0;j<=(2*n);j++) x++; ② }解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1f(n)=2n^2-n-1+(n-1)=2n^2-2該程序的時間復雜度T(n)=O(n^2).O(n)
2.3.
a=0;b=1; ①for (i=1;i<=n;i++) ②{ s=a+b; ③b=a; ④ a=s; ⑤}解: 語句1的頻度:2,
語句2的頻度: n, 語句3的頻度: n-1, 語句4的頻度:n-1, 語句5的頻度:n-1, T(n)=2+n+3(n-1)=4n-1=O(n).O(log2n )
2.4.
i=1; ①while (i<=n)i=i*2; ②解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n 取最大值f(n)= log2n,T(n)=O(log2n )O(n^3)
2.5.
for(i=0;i<n;i++){ for(j=0;j<i;j++) {for(k=0;k<j;k++)x=x+2; }}解:當i=m, j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,…,m-1 , 所以這里最內循環共進行了0+1+…+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+…+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).
我們還應該區分算法的最壞情況的行為和期望行為。如快速排序的最 壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等于 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:
訪問數組中的元素是常數時間操作,或說O(1)操作。一個算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字符的串需要O(n)時間 。常規的矩陣乘算法是O(n^3),因為算出每個元素都需要將n對 元素相乘并加到一起,所有元素的個數是n^2。
指數時間算法通常來源于需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的算法將是O(2n)的 。指數算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名 的“巡回售貨員問題” ),到目前為止找到的算法都是指數的。如果我們真的遇到這種情況, 通常應該用尋找近似最佳結果的算法替代之。
總結
以上是生活随笔為你收集整理的时间复杂度O(n)什么意思的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: RENIX_802.3ah功能介绍(下)
- 下一篇: 我要学编程,看什么书好?--^_^,这里