冷启动问题——协同过滤(推荐系统)
冷啟動問題——協同過濾(推薦系統)
- 1. 什么是冷啟動問題
- 2. 協同過濾
- 2.1 User CF
- 2.2 Item CF
1. 什么是冷啟動問題
冷啟動問題:推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣。
這類問題主要分為3類1:
- 用戶冷啟動:即如何給新用戶做個性化推薦
- 物品冷啟動:即如何將新的物品推薦給可能對它感興趣的用戶
- 系統冷啟動:即如何在一個新開發的網站(沒有用戶,沒有用戶行為,只有部分物品信息) 上設計個性化推薦系統,從而在網站剛發布時就讓用戶體會到個性化推薦
而本文主要討論協同過濾(Collaborative Filtering)算法,該算法可以很好的解決第二種冷啟動問題,,即物品冷啟動。
2. 協同過濾
協同過濾可以分為兩種:
- User CF:基于用戶的協同過濾
- Item CF:基于物品的協同過濾
2.1 User CF
User CF:(User Collaboration Filter),是基于用戶之間行為的方法,舉個栗子:
有兩位顧客,顧客A之前買過詹姆斯17、AHC洗面奶、伊利純牛奶等商品;顧客B之前買過詹姆斯10、AHC洗面奶。
根據這兩位顧客的歷史購買喜好行為等信息、系統就會自然而然的推薦牛奶給顧客B。
2.2 Item CF
Item CF:(Item Collaboration Filter),基于物品的協同過濾
核心思想:為用戶推薦他們之前喜歡的物品相似的物品。
主要分為2步:
物品之間的相關程度通過物品本身的內部信息進行計算,比如:名稱、商品成分、價格等信息。
基本思路就是將物品轉換成嵌入向量,通過計算向量之間的相似度(例如計算余弦相似度),得到物品的相關程度。2
具體實例2如下:
最近在研究服裝推薦相關的領域,有一起的小伙伴可以相互討論哈!
最后日常心靈雞湯來啦:
有人在奔跑,有人在睡覺,有人在感恩,有人在抱怨,有目標的睡不著,沒目標的人睡不醒,
努力才是人生應有的態度,睜開眼就是新的開始。
推薦系統淺談系列(三) - 冷啟動問題 ??
[推薦算法]ItemCF,基于物品的協同過濾算法 ?? ??
總結
以上是生活随笔為你收集整理的冷启动问题——协同过滤(推荐系统)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 广东电网携手华为,为“数字电网”建设提供
- 下一篇: 静态时序分析(STA)附秋招面试提问