matlab霍夫变换代码,[转载]Matlab实现霍夫变换
本代碼提供了matlab下求取經(jīng)過霍夫變換的直線斜率,并將其聯(lián)合,代碼見下方,實驗結(jié)果見文末。
%?入口圖像為?BW,出口圖像為f
%optimize?from?main_optimize,?merely?select?2?lines,?one?has?positive
%slope,the?other?has?negative?slope
clear?all,close?all
BW=imread('D:ImagesNEWimg4b9faef664e03.jpg');
figure,imshow(BW);
BW=rgb2gray(BW);
%thresh=[0.01,0.17];
thresh=[0.01,0.10];
sigma=2;%定義高斯參數(shù)
f?=?edge(double(BW),'canny',thresh,sigma);
figure,subplot(121);
imshow(f,[]);
title('canny?Edge?Detect?Result');
[H,?theta,?rho]=?hough(f,?0.1);%cos(theta)*x+sin(theta)*y=rho
%imshow(theta,rho,H,[],'notruesize'),axis?on,axis?normal
%xlabel('theta'),ylabel('rho');
[r,c]=houghpeaks(H,10);
hold?on
lines=houghlines(f,theta,rho,r,c);
subplot(122);
imshow(f,[]),title('Hough?Transform?Detect?Result'),hold?on
nlind=0;%new?line?index
st=1;
%%%%%%%%%求斜率%%%%%%%%%%%%
for?k=1:length(lines)
%xy=[lines(k).point1;lines(k).point2];
xielv(k)=(lines(k).point2(1)-lines(k).point1(1))/(lines(k).point2(2)-lines(k).point1(2)+0.0001)
end
%%%%%%%%%將相同斜率的直線連起來%%%%%%%%%%%%
k=1;
while(k<=length(lines))
if(k~=length(lines))
k=k+1;
end
while(abs(xielv(k)-xielv(k-1))<0.0001)
k=k+1;
if(k>length(lines))
break;
end
end
if(abs(xielv(k-1))<0.05||abs(xielv(k-1))>=10)%eliminate?horizontal?and?vertical?lines,防治水平線和樓房
st=k;
if(k~=length(lines))
continue;
end
end
if(st==length(lines)&&k==st)
if(abs(xielv(k))>0.05&&abs(xielv(k))<10)
nlind=nlind+1;
newlines(nlind)=lines(st);
newlines(nlind).point2=lines(k).point2;
newxy=[newlines(nlind).point1;newlines(nlind).point2];
plot(newxy(:,2),newxy(:,1),'LineWidth',4,'Color',[.6?1.0?.8]);
end
break;
end
%end=k-1,start=st;?draw?line
nlind=nlind+1;
newlines(nlind)=lines(st);
newlines(nlind).point2=lines(k-1).point2;
newxy=[newlines(nlind).point1;newlines(nlind).point2];
plot(newxy(:,2),newxy(:,1),'LineWidth',4,'Color',[.6?1.0?.8]);
st=k;
end
fprintf('%d?lines?are?detected?in?sum.n',nlind);
% 入口圖像為 BW,出口圖像為f
%optimize from main_optimize, merely select 2 lines, one has positive
%slope,the other has negative slope
clear all,close all
BW=imread('D:ImagesNEWimg4b9faef664e03.jpg');
figure,imshow(BW);
BW=rgb2gray(BW);
%thresh=[0.01,0.17];
thresh=[0.01,0.10];
sigma=2;%定義高斯參數(shù)
f = edge(double(BW),'canny',thresh,sigma);
figure,subplot(121);
imshow(f,[]);
title('canny Edge Detect Result');
[H, theta, rho]= hough(f, 0.1);%cos(theta)*x+sin(theta)*y=rho
%imshow(theta,rho,H,[],'notruesize'),axis on,axis normal
%xlabel('theta'),ylabel('rho');
[r,c]=houghpeaks(H,10);
hold on
lines=houghlines(f,theta,rho,r,c);
subplot(122);
imshow(f,[]),title('Hough Transform Detect Result'),hold on
nlind=0;%new line index
st=1;
%%%%%%%%%求斜率%%%%%%%%%%%%
for k=1:length(lines)
%xy=[lines(k).point1;lines(k).point2];
xielv(k)=(lines(k).point2(1)-lines(k).point1(1))/(lines(k).point2(2)-lines(k).point1(2)+0.0001)
end
%%%%%%%%%將相同斜率的直線連起來%%%%%%%%%%%%
k=1;
while(k<=length(lines))
if(k~=length(lines))
k=k+1;
end
while(abs(xielv(k)-xielv(k-1))<0.0001)
k=k+1;
if(k>length(lines))
break;
end
end
if(abs(xielv(k-1))<0.05||abs(xielv(k-1))>=10)%eliminate horizontal and vertical lines,防治水平線和樓房
st=k;
if(k~=length(lines))
continue;
end
end
if(st==length(lines)&&k==st)
if(abs(xielv(k))>0.05&&abs(xielv(k))<10)
nlind=nlind+1;
newlines(nlind)=lines(st);
newlines(nlind).point2=lines(k).point2;
newxy=[newlines(nlind).point1;newlines(nlind).point2];
plot(newxy(:,2),newxy(:,1),'LineWidth',4,'Color',[.6 1.0 .8]);
end
break;
end
%end=k-1,start=st; draw line
nlind=nlind+1;
newlines(nlind)=lines(st);
newlines(nlind).point2=lines(k-1).point2;
newxy=[newlines(nlind).point1;newlines(nlind).point2];
plot(newxy(:,2),newxy(:,1),'LineWidth',4,'Color',[.6 1.0 .8]);
st=k;
end
fprintf('%d lines are detected in sum.n',nlind);
實驗結(jié)果:
原圖:
未優(yōu)化的霍夫變換:
優(yōu)化后:
************************************另一版本******************************
總結(jié)如下:
(1)
對圖片預(yù)處理,這里必須說明的是,純種的Hough變換只適應(yīng)黑白圖片,換句話說,在使用它之前,你已經(jīng)提取出該圖片的邊緣了。
(2) 找到圖片中的“黑點”也就是要處理的邊緣,假設(shè)其在直角坐標(biāo)系的下標(biāo)為(x,
y),對其進(jìn)行坐標(biāo)變換ρ=x*cosθ+y*sinθ,其中0
(3) 判斷(ρj, θj)與哪個數(shù)組元素對應(yīng),并讓該數(shù)組元素加1。
(4) 比較數(shù)組元素值的大小,最大值對應(yīng)的(ρj, θj)就是這些共線點對應(yīng)的直線方程的參數(shù)。共線方程為
ρj = xcosθj + ysinθj
在matlab中,使用hough、houghpeaks和houghlines可以簡單的檢測到直線。例子如下。
I = imread('test12.bmp');?%讀入示例圖片%
Imshow(I);?%顯示示例圖片%
Img =
edge(I,'prewitt');?%利用prewitt算子提取邊緣%
Imshow(Img);?%顯示提取邊緣的圖片%
[H, T, R] =
hough(Img);?%hough變換%
imshow(sqrt(H),
[]);?%hough變換的結(jié)果%
P = houghpeaks(H, 15, 'threshold', ceil(0.3*max(H(:))));
%尋找最大點%
lines = houghlines(Img, T, R, P,'FillGap',10,'MinLength',20
);
%返回找到的直線%
figure, imshow(I), hold on
max_len = 0;
for k = 1:length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
end
總結(jié)
以上是生活随笔為你收集整理的matlab霍夫变换代码,[转载]Matlab实现霍夫变换的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: IDT代理——北京泽平科技CRISPR基
- 下一篇: CAM350几乎看不到Gerber文件颜