Bjarne:如何对付内存泄漏?
生活随笔
收集整理的這篇文章主要介紹了
Bjarne:如何对付内存泄漏?
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
寫出那些不會導致任何內存泄漏的代碼。很明顯,當你的代碼中到處充滿了new 操作、delete操作和指針運算的話,你將會在某個地方搞暈了頭,導致內存泄漏,指針引用錯誤,以及諸如此類的問題。 這和你如何小心地對待內存分配工作其實完全沒有關系:代碼的復雜性最終總是會超過你能夠付出的時間和努力。于是隨后產生了一些成功的技巧,它們依賴于將內存分配(allocations)與重新分配(deallocation)工作隱藏在易于管理的類型之后。標準容器(standard containers)是一個優秀的例子。它們不是通過你而是自己為元素管理內存,從而避免了產生糟糕的結果。想象一下,沒有string和vector的幫助,寫出這個:
你有多少機會在第一次就得到正確的結果?你又怎么知道你沒有導致內存泄漏呢?
注意,沒有出現顯式的內存管理,宏,造型,溢出檢查,顯式的長度限制,以及指針。通過使用函數對象和標準算法(standard algorithm),我可以避免使用指針——例如使用迭代子(iterator),不過對于一個這么小的程序來說有點小題大作了。
這些技巧并不完美,要系統化地使用它們也并不總是那么容易。但是,應用它們產生了驚人的差異,而且通過減少顯式的內存分配與重新分配的次數,你甚至可以使余下的例子更加容易被跟蹤。早在1981年,我就指出,通過將我必須顯式地跟蹤的對象的數量從幾萬個減少到幾打,為了使程序正確運行而付出的努力從可怕的苦工,變成了應付一些可管理的對象,甚至更加簡單了。
如果你的程序還沒有包含將顯式內存管理減少到最小限度的庫,那么要讓你程序完成和正確運行的話,最快的途徑也許就是先建立一個這樣的庫。
模板和標準庫實現了容器、資源句柄以及諸如此類的東西,更早的使用甚至在多年以前。異常的使用使之更加完善。
如果你實在不能將內存分配/重新分配的操作隱藏到你需要的對象中時,你可以使用資源句柄(resource handle),以將內存泄漏的可能性降至最低。這里有個例子:我需要通過一個函數,在空閑內存中建立一個對象并返回它。這時候可能忘記釋放這個對象。畢竟,我們不能說,僅僅關注當這個指針要被釋放的時候,誰將負責去做。使用資源句柄,這里用了標準庫中的auto_ptr,使需要為之負責的地方變得明確了。
| #include<vector> #include<string> #include<iostream> #include<algorithm> using namespace std; int main() // small program messing around with strings { cout << "enter some whitespace-separated words:\n"; vector<string> v; string s; while (cin>>s) v.push_back(s); sort(v.begin(),v.end()); string cat; typedef vector<string>::const_iterator Iter; for (Iter p = v.begin(); p!=v.end(); ++p) cat += *p+"+"; cout << cat << ’\n’; } |
你有多少機會在第一次就得到正確的結果?你又怎么知道你沒有導致內存泄漏呢?
注意,沒有出現顯式的內存管理,宏,造型,溢出檢查,顯式的長度限制,以及指針。通過使用函數對象和標準算法(standard algorithm),我可以避免使用指針——例如使用迭代子(iterator),不過對于一個這么小的程序來說有點小題大作了。
這些技巧并不完美,要系統化地使用它們也并不總是那么容易。但是,應用它們產生了驚人的差異,而且通過減少顯式的內存分配與重新分配的次數,你甚至可以使余下的例子更加容易被跟蹤。早在1981年,我就指出,通過將我必須顯式地跟蹤的對象的數量從幾萬個減少到幾打,為了使程序正確運行而付出的努力從可怕的苦工,變成了應付一些可管理的對象,甚至更加簡單了。
如果你的程序還沒有包含將顯式內存管理減少到最小限度的庫,那么要讓你程序完成和正確運行的話,最快的途徑也許就是先建立一個這樣的庫。
模板和標準庫實現了容器、資源句柄以及諸如此類的東西,更早的使用甚至在多年以前。異常的使用使之更加完善。
如果你實在不能將內存分配/重新分配的操作隱藏到你需要的對象中時,你可以使用資源句柄(resource handle),以將內存泄漏的可能性降至最低。這里有個例子:我需要通過一個函數,在空閑內存中建立一個對象并返回它。這時候可能忘記釋放這個對象。畢竟,我們不能說,僅僅關注當這個指針要被釋放的時候,誰將負責去做。使用資源句柄,這里用了標準庫中的auto_ptr,使需要為之負責的地方變得明確了。
| #include<memory> #include<iostream> using namespace std; struct S { S() { cout << "make an S\n"; } ~S() { cout << "destroy an S\n"; } S(const S&) { cout << "copy initialize an S\n"; } S& operator=(const S&) { cout << "copy assign an S\n"; } }; S* f() { return new S; // 誰該負責釋放這個S? }; auto_ptr<S> g() { return auto_ptr<S>(new S); // 顯式傳遞負責釋放這個S } int main() { cout << "start main\n"; S* p = f(); cout << "after f() before g()\n"; // S* q = g(); // 將被編譯器捕捉 auto_ptr<S> q = g(); cout << "exit main\n"; // *p產生了內存泄漏 // *q被自動釋放 } |
在更一般的意義上考慮資源,而不僅僅是內存。
如果在你的環境中不能系統地應用這些技巧(例如,你必須使用別的地方的代碼,或者你的程序的另一部分簡直是原始人類(譯注:原文是Neanderthals,尼安德特人,舊石器時代廣泛分布在歐洲的猿人)寫的,如此等等),那么注意使用一個內存泄漏檢測器作為開發過程的一部分,或者插入一個垃圾收集器(garbage collector)。
總結
以上是生活随笔為你收集整理的Bjarne:如何对付内存泄漏?的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: URL 重写就是把URL地址重新改写
- 下一篇: 用照片讲故事