[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组...
1.稍微修正以前局部使用的方程組可以得到真空中的 Maxwell 方程組: $$\beex \bea \Div {\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div {\bf B}&=0,\\ \rot{\bf B}&=\mu_0\sex{\ve_0\cfrac{\p{\bf E}}{\p t}+{\bf j}}. \eea \eeex$$ 與其相伴的有電荷守恒方程: $$\bex \cfrac{\p\rho}{\p t}+\Div{\bf j}=0. \eex$$
2.Maxwell 方程組具有本質(zhì)重要性的是 $$\beex \bea \ve_0\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu_0}\rot{\bf B}&=-{\bf j},\\ \cfrac{\p{\bf B}}{\p t}+\rot {\bf E}=0. \eea \eeex$$ 事實(shí)上, $\Div{\bf E}=\cfrac{\rho}{\ve_0}$, $\Div{\bf B}=0$ 均可化為對(duì)初值應(yīng)滿足的附加條件. 證明: $$\beex \bea \cfrac{\p}{\p t}\sex{\Div{\bf E}-\cfrac{\rho}{\ve_0}} &=\Div \cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\ve_0}\cfrac{\p\rho}{\p t}=0,\\ \cfrac{\p }{\p t}\Div {\bf B}&=\Div\cfrac{\p{\bf B}}{\p t} =-\Div \rot{\bf E}=0. \eea \eeex$$
轉(zhuǎn)載于:https://www.cnblogs.com/zhangzujin/p/3624037.html
總結(jié)
以上是生活随笔為你收集整理的[物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组...的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: SQL Server 索引结构及其使用(
- 下一篇: 工具箱 - Putty 安装调试3