pandas数据分析选则接近数值的最接优方案
生活随笔
收集整理的這篇文章主要介紹了
pandas数据分析选则接近数值的最接优方案
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
import numpy as np
import pandas as pd# pandas數據分析選則接近數值的最接優方案# 1.準備數據
CHILD_TABLE = (720, 750)
CHIDL_STOOL = (300, 350)
CHILD_PLAY_LEN = (300, 400)
CHILD_TENT = (1100, 1300)
# 2.遍歷循環,添加到列表中
sum_length_lst = []
play_lst = []
table_lst = []
stool_lst = []
tent_lst = []
for play_b in CHILD_PLAY_LEN:for table_b in CHILD_TABLE:for stool_b in CHIDL_STOOL:for tent_b in CHILD_TENT:tent_lst.append(tent_b)play_lst.append(play_b)table_lst.append(table_b)stool_lst.append(stool_b)# 3.計算各個之和,生成列表sum_len = play_b + table_b + stool_b + tent_bsum_length_lst.append(sum_len)
# 4.添加到字典
pd_dict = {"sum_len": sum_length_lst,"play_len": play_lst,"table_len": table_lst,"stool_len": stool_lst,"tent_len": tent_lst
}
# 5.生成列表數據、排序
df = pd.DataFrame(pd_dict)
df = df.sort_values(by='sum_len')
print(df)
自動生成列表并排序:
# 6.根據判斷距離尋找列表接近數值的表方案 dis = 2700 nearst_df = df.loc[df.sum_len <= dis ] nearst_df = nearst_df.ix[nearst_df.sum_len.idxmax] print(nearst_df)
# 6.根據判斷距離尋找列表接近數值的表方案 dis = 2700 nearst_df = df.loc[df.sum_len <= dis ] nearst_df = nearst_df.ix[nearst_df.sum_len.idxmax] print(nearst_df)
結果顯示如下:
總結
以上是生活随笔為你收集整理的pandas数据分析选则接近数值的最接优方案的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: transition动画与transfo
- 下一篇: 模块概念与使用及注意事项