利用卷积神经网络实现人脸识别(python+TensorFlow)
生活随笔
收集整理的這篇文章主要介紹了
利用卷积神经网络实现人脸识别(python+TensorFlow)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
利用CNN卷積神經網絡實現人臉識別(python+TensorFlow)
使用的人臉數據是耶魯大學的一個人臉數據集Yale_64x64.mat,數據集已經上傳Yale 64x64.mat
程序:
''''''''' 使用Yale_64x64.mat人臉數據,利用CNN卷積神經網絡實現人臉識別 Yale_64x64.mat數據構成:分為fea(人臉數據165x4096) gnd(標簽165x1)圖像大小為64x64(64x64=4096)一共15個人的人臉,每個人11條人臉數據 ''' import tensorflow as tf import numpy as np import scipy.io as siof = open('Yale_64x64.mat','rb') mdict = sio.loadmat(f) # fea:數據 gnd:標簽 train_data = mdict['fea'] train_label = mdict['gnd']# 將數據分為訓練數據與測試數據 train_data = np.random.permutation(train_data) train_label = np.random.permutation(train_label) test_data = train_data[0:64] test_label = train_label[0:64] np.random.seed(100) test_data = np.random.permutation(test_data) np.random.seed(100) test_label = np.random.permutation(test_label) train_data = train_data.reshape(train_data.shape[0], 64, 64, 1).astype(np.float32)/255# 將標簽數據改為one_hot編碼格式的數據 train_labels_new = np.zeros((165, 15)) for i in range(0, 165):j = int(train_label[i, 0])-1train_labels_new[i, j] = 1test_data_input = test_data.reshape(test_data.shape[0], 64, 64, 1).astype(np.float32)/255 test_labels_input = np.zeros((64,15)) for i in range(0,64):j = int(test_label[i, 0])-1test_labels_input[i, j] = 1# CNN data_input = tf.placeholder(tf.float32,[None, 64, 64, 1]) label_input = tf.placeholder(tf.float32,[None, 15])layer1 = tf.layers.conv2d(inputs=data_input, filters=32, kernel_size=2, strides=1, padding='SAME', activation=tf.nn.relu) layer1_pool = tf.layers.max_pooling2d(layer1, pool_size=2, strides=2) layer2 = tf.layers.conv2d(inputs=layer1_pool, filters=64, kernel_size=2, strides=1, padding='SAME', activation=tf.nn.relu) layer2_pool = tf.layers.max_pooling2d(layer2, pool_size=2, strides=2) layer3 = tf.reshape(layer2_pool, [-1,16*16*64]) layer3_relu = tf.layers.dense(layer3,1024, tf.nn.relu) output = tf.layers.dense(layer3_relu, 15)# 計算損失函數 最小化損失函數 計算測試精確度 loss = tf.losses.softmax_cross_entropy(onehot_labels=label_input, logits=output) train = tf.train.GradientDescentOptimizer(0.01).minimize(loss) accuracy = tf.metrics.accuracy(labels=tf.argmax(label_input,axis=1), predictions=tf.argmax(output, axis=1))[1]# 初始化 運行計算圖 init = tf.group(tf.global_variables_initializer(),tf.local_variables_initializer()) with tf.Session() as sess:sess.run(init)tf.summary.FileWriter('D:/face_log', sess.graph)for i in range(0,1500):train_data_input = np.array(train_data)train_label_input = np.array(train_labels_new)sess.run([train, loss], feed_dict={data_input: train_data_input, label_input: train_label_input})acc = sess.run(accuracy, feed_dict={data_input: test_data_input, label_input: test_labels_input})print('step:%d accuracy:%.2f%%' % (i+1, acc*100))運行結果:
總結
以上是生活随笔為你收集整理的利用卷积神经网络实现人脸识别(python+TensorFlow)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: MATLAB GUI引用了不存在的字段
- 下一篇: TensorFlow下安装matplot