【PID优化】基于蝙蝠 粒子群 花卉授粉算法和布谷鸟搜索算法实现热交换器的PI控制器优化
生活随笔
收集整理的這篇文章主要介紹了
【PID优化】基于蝙蝠 粒子群 花卉授粉算法和布谷鸟搜索算法实现热交换器的PI控制器优化
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
?1 簡介
2 部分代碼
%% --------------- All subfunctions are list below ------------------%% Get cuckoos by ramdom walkfunction nest=get_cuckoos(nest,best,Lb,Ub)% Levy flightsn=size(nest,1);% Levy exponent and coefficient% For details, see equation (2.21), Page 16 (chapter 2) of the book% X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).beta=3/2;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);?for j=1:n, s=nest(j,:); % This is a simple way of implementing Levy flights % For standard random walks, use step=1; %% Levy flights by Mantegna's algorithm u=randn(size(s))*sigma; v=randn(size(s)); step=u./abs(v).^(1/beta); % In the next equation, the difference factor (s-best) means that % when the solution is the best solution, it remains unchanged. stepsize=0.01*step.*(s-best); % Here the factor 0.01 comes from the fact that L/100 should the typical % step size of walks/flights where L is the typical lenghtscale; % otherwise, Levy flights may become too aggresive/efficient, % which makes new solutions (even) jump out side of the design domain % (and thus wasting evaluations). % Now the actual random walks or flights s=s+stepsize.*randn(size(s)); % Apply simple bounds/limits nest(j,:)=simplebounds(s,Lb,Ub);endend3 仿真結果
4 參考文獻
[1]王慶喜, 儲澤楠. 基于動態(tài)布谷鳥搜索算法的PID控制器參數(shù)優(yōu)化[J]. 計算機測量與控制, 2015, 23(4):4.
博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡預測、信號處理、元胞自動機、圖像處理、路徑規(guī)劃、無人機等多種領域的Matlab仿真,相關matlab代碼問題可私信交流。
部分理論引用網(wǎng)絡文獻,若有侵權聯(lián)系博主刪除。
總結
以上是生活随笔為你收集整理的【PID优化】基于蝙蝠 粒子群 花卉授粉算法和布谷鸟搜索算法实现热交换器的PI控制器优化的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: NOR Flash、NAND Flash
- 下一篇: qq for android 1.0,Q