[数学建模(六)]使用MATLAB实现插值
常用的插值:拉格朗日多項式插值、牛頓插值、分段線性插值、Hermite 插值和三次樣條插值。
1.拉格朗日插值法
function y=lagrange(x0,y0,x);
n=length(x0);m=length(x);
for i=1:m
z=x(i);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end
測試:
>> x0=1:5;
>> y0=x0.^2;
>> x=2.5;
>> y=lagrange(x0,y0,x)
y =
6.2500
>> plot(x0,y0)
>> hold on
>> plot(x,y,'*')
2.牛頓插值
function yi=newton(x,y,xi)
n=length(x);
m=length(y);
if n~=m
error('The lengths of X ang Y must be equal!');
return;
end
Y=zeros(n);
Y(:,1)=y';
for k=1:n-1
for i=1:n-k
if abs(x(i+k)-x(i))<eps
error('the DATA is error!');
return;
end
Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));
end
end
yi=0;
for i=1:n
z=1;
for k=1:i-1
z=z*(xi-x(k));
end
yi=yi+Y(1,i)*z;
end
測試:
x0=1:5;
y0=x0.^2;
x=2.5;
y=newton(x0,y0,x)
plot(x0,y0)
hold on
plot(x,y,'*')
y =
6.2500
3.分段線性插值
y=interp1(x0,y0,x,'method')
method 指定插值的方法,默認為線性插值。其值可為:
'nearest' 最近項插值
'linear' 線性插值
'spline' 逐段3 次樣條插值
'cubic' 保凹凸性3 次插值。
所有的插值方法要求 x0 是單調的。
測試:
x0=1:5;
y0=x0.^2;
x=2.5;
y=interp1(x0,y0,x,'linear')
plot(x0,y0)
hold on
plot(x,y,'*')
y =
6.5000
4. 埃爾米特(Hermite)插值
function y=hermite(x0,y0,y1,x); %y1是導數值
n=length(x0);m=length(x);
for k=1:m
yy=0.0;
for i=1:n
h=1.0;
a=0.0;
for j=1:n
if j~=i
h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2;
a=1/(x0(i)-x0(j))+a;
end
end
yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i));
end
y(k)=yy;
end
測試:
>> x0=1:5;
y0=x0.^2;
x=2.5;
y1=[1 1 1 1 1];
y=hermite(x0,y0,y1,x)
plot(x0,y0)
hold on
plot(x,y,'*')
y =
7.4228
5.樣條插值
Matlab 中三次樣條插值也有現成的函數:
(1)y=interp1(x0,y0,x,'spline');
(2)y=spline(x0,y0,x);
(3)pp=csape(x0,y0,conds);
y=ppval(pp,x)
說明:
csape 的返回值是pp 形式,要求插
值點的函數值,必須調用函數ppval。
pp=csape(x0,y0):使用默認的邊界條件,即Lagrange 邊界條件。
pp=csape(x0,y0,conds)中的conds 指定插值的邊界條件,其值可為:
'complete' 邊界為一階導數,即默認的邊界條件
'not-a-knot' 非扭結條件
'periodic' 周期條件
'second' 邊界為二階導數,二階導數的值[0, 0]。
'variational' 設置邊界的二階導數值為[0,0]。
測試:
x0=1:5;
y0=x0.^2;
x=2.5;
y1=interp1(x0,y0,x,'spline')
y2=spline(x0,y0,x)
pp=csape(x0,y0,'second')
y3=ppval(pp,x)
plot(x0,y0)
hold on
plot(x,y1,'*')
plot(x,y2,'*')
plot(x,y3,'*')
y1 =
6.2500
y2 =
6.2500
pp =
包含以下字段的 struct:
form: 'pp'
breaks: [1 2 3 4 5]
coefs: [4×4 double]
pieces: 4
order: 4
dim: 1
y3 =
6.2321
6.二維插值
一維插值:節點為一維變量,插值函數是一元函數(曲線)。
二維插值:節點是二維的,插值函數就是二元函數,即曲面。
6.1插值節點為網格節點
(1)z=interp2(x0,y0,z0,x,y,'method')
(2)pp=csape({x0,y0},z0,conds,valconds); %三次樣條插值
z=fnval(pp,{x,y})
6.2 插值節點為散亂節點
總結
以上是生活随笔為你收集整理的[数学建模(六)]使用MATLAB实现插值的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 增进手机网站界面友好的五个设计技巧增进手
- 下一篇: 如何维护电脑总体概括篇电脑维护工作内容