数据创新的四个陷阱
-更多關于數智化轉型、數據中臺內容請加入阿里云數據中臺交流群—數智俱樂部 和關注官方微信公總號(文末掃描二維碼或點此加入)
-阿里云數據中臺官網 https://dp.alibaba.com/index
作者:智詢
數據的重要性在當今已經無需在多言,所有的企業都意識到數據的重要性,都希望利用數據來驅動業務的發展。
但是,很多企業信息化管理者依然存在對于數據智能,數據驅動的一些誤解,這些誤解會讓企業的數據利用陷入深淵。
陷阱一、應用尚未建設,所以不考慮數據利用
當我們跟一些企業信息化管理者聊起應該盡早的考慮數據的利用,要對數據做整體規劃時,會經常聽到這樣一句話。
“我現在業務都還沒做起來,還不到考慮數據利用的時候”
這一句話代表了很大一部分企業對于數據利用的認知,那就是,數據利用是從先有數據開始的,而數據是在應用建設之后存到數據庫里的,所以先建設應用,然后等數據庫里有了數據后,在考慮如何利用數據。
聽上去,這個邏輯完全正確。
但是其實這就是很多企業存在的首要的對于數據利用的誤區:”先建設應用,再考慮數據利用“。
如果用這樣的思路去建設,過了一年以后,往往這個企業就會立刻提出新的問題,“多個應用系統之間的數據不打通,不對齊,不一致,數據用不起來”。
這個誤解,是根本上不充分理解數據利用的兩個本質:
第一,數據是客觀存在的,不取決于你建不建設應用
一個企業,只要業務在運行,哪怕它沒有建設任何系統,它的數據都是在實時產生的,只是你沒有把它采集起來而已。
數據是業務在數字化世界里的構成原子,業務流程和行為會時刻產生各種數據,而不是必須要建設應用這些數據才產生的。舉個例子,當快遞員接到一個快遞訂單的時候,發件人,收件人,貨物類別,發貨地,發貨地,運輸工具類型,距離等這些數據就已經產生,并且會驅動這個快遞的走向。有沒有信息化系統的支持,只是改變了這些數據的記錄和傳遞的手段是一張紙還是一個網絡而已。這些數據是客觀存在的,他不會因為信息化系統本身而改變。
我們要從本質上認知到,數據是業務在數字化世界里的投影模型,它是業務的鏡像,是客觀存在的。
只要有業務,那么就存在對應的數據。應用只是把數據通過軟件采集到存儲設備里而已。
第二,數據利用的規劃要早于應用和流程的建設
我們在建房子之前,就要做整體設計,規劃出一棟大廈的各種利用場景,只有這樣才不會出現一個不能被進入的房子。
現在,每個企業都意識到,數據是企業的核心資產,應用是采集和利用這些資產的工具。為了更好的在數據采集之后得到充分的利用,每個企業必須要在應用和流程的規劃之前,完成數據利用的規劃。
這就包括企業的數據資產目錄的規劃設計,企業的數據利用場景的規劃和數據的存儲,處理分析這些數據的技術平臺的需求規劃等。
Data First,在系統還沒有建設的時候,做好了數據的藍圖規劃,完成了各個應用系統的數據分布全景圖,企業就能規避數據孤島的存在。
所以,如果你現在還沒有建設應用,那么恭喜你,這是最好的規劃數據利用藍圖的機會,趕緊開始吧。
陷阱二、沒有大數據,所以就不考慮數據利用
“我們現在的數據很少,只能叫小數據,所以還談不上數據利用”,這也是一個典型的數據利用的誤解。
我第一次聽到這句話就是在B2B2C的零售企業。的確,傳統的通過經銷商為主要渠道的品牌商,往往沒有建立自己的電商體系,所以最終消費者的行為數據拿不到。他們有的就是Sell In的數據,而Sell In的數據往往量不大,并且維度不多,所以利用價值有限。
但是,現在的這個企業正在做的事情就是通過一個個的小程序,小應用,建立各種和終端消費者,客戶的觸點,從而獲取各類數據,單個的看都是小數據,量不大,維度也不多,但是,當這所有的點連接在一起,就構成了一個豐富,多樣的用戶數據全景。
這個企業的業務負責人篤信,在數字化時代,誰擁有更多的數據場景,誰就能夠擁有更強的競爭優勢。
這個事例充分的說明,也許現在你的業務模式決定了你并沒有豐富的數據,但是,你依然要通過各種應用創新來多渠道,全方位獲取用戶,消費者的數據。而要建設什么應用,獲取什么數據,獲取的這些單個點狀數據間如何構成相互聯結,組合出數據場景價值呢?
這就是需要在構建應用之前有數據規劃,勾勒出一個數據場景地圖,從而沿著這個地圖去建設個中小應用。
陷阱三、數據利用就是做數據分析和挖掘,交易應用系統就用不到數據技術
過去的應用系統被劃分為OLTP和OLAP,在線交易型系統和在線分析型系統。所以,往往一看到這個應用本身是一個交易型的軟件,按照傳統的架構,那就是OLTP系統,所以往往不會用到一些OLAP的技術。
但是,目前的情況則發生了巨大的變化。
拿約車調度系統來講,按照傳統的劃分,這是典型的交易系統,創建訂單,分配司機。但是,如果要能夠支撐每秒幾萬單的調度分配,用手工分配的方式是不可能的,這個調度系統需要具有實時數據分析能力,而這里面價格確定和路線的規劃的部分,又需要參考歷史的相關數據分析結果。這樣一來,這個典型的交易應用是被數據驅動的,它的底層和和核心其實是批量數據分析和實時數據處理。
未來的所有的應用都會是這樣,那就是OLAP在支撐著OLTP系統的每一個決策和行為,從而成為智能的應用。
數據技術正在逐漸重構所有的傳統流程類應用,讓他們成為數據驅動的系統,從而變得更智慧。
陷阱四、最重要的是算法,所以軟件工程公司是做不了數據科學項目的
一提到數據項目,很多人腦子里第一個想到的就是算法模型,似乎只有做研究的,做算法的,做人工智能的才是做數據的。
所以,現在有一類觀點,認為信息化產業里分為做算法的和做軟件的,而只有做算法的才是做人工智能和數據的。
這是一個典型的誤解,將算法與軟件工程割裂開來。就像不久前,一個長期合作的客戶用一個固有印象,”思特沃克不是做人工智能的“,就否定了我們的一個機會,這就是對于人工智能應用的誤解。
我們用下面這張圖來體現算法和人工智能(數據科學)的關系。
人工智能的最底層是由各種算法組成的,但是,目前行業里所有人使用的常用算法,都是公開的,而真正研究和產出這些算法的,是學術研究機構。
人工智能分為兩個領域,一個是前沿研究領域,一個是應用領域。而作為從事工業生產和商業運營的企業來說,需要的是后者。而后者最重要的是利用軟件工程能力將適合的算法應用到有價值的場景,從而去賦能業務。
在算法之上,人工智能的應用更重要的是充分的高質量的數據集,將算法和數據開發成為良好用戶體驗的智能軟件的工程能力。
所以,優秀的做人工智能的企業除了擁有調優,調用公開的算法和代碼之外的能力更重要的是業務創新和軟件工程的能力。
總結和啟示
通過逐個分析這四個對于數據智能的四個陷阱,我們可以得出如下啟示:
** 一、數據規劃應該優先于業務系統的建設,構建拉通的,一致的數據全景圖,避免應用之間的數據孤島二、構建起數據全景圖后,在沿著這個地圖來構建一個個去采集填滿這些數據的小應用,從而構建自己的數據資產三、所有的應用軟件都會被數據技術所賦能,成為數據驅動的智能應用四、人工智能應用于業務最重要的是場景創新能力和軟件工程能力**數據中臺是企業數智化的必經之路,阿里巴巴認為數據中臺是集方法論、工具、組織于一體的,“快”、“準”、“全”、“統”、“通”的智能大數據體系。
目前正通過阿里云對外輸出系列解決方案,包括通用數據中臺解決方案、零售數據中臺解決方案、金融數據中臺解決方案、互聯網數據中臺解決方案、政務數據中臺解決方案等細分場景。
其中阿里云數據中臺產品矩陣是以Dataphin為基座,以Quick系列為業務場景化切入,包括:
- - Dataphin,一站式、智能化的數據構建及管理平臺;
- - Quick BI,隨時隨地 智能決策;
- - Quick Audience,全方位洞察、全域營銷、智能增長;
- - Quick A+, 跨多端全域應用體驗分析及洞察的一站式數據化運營平臺;
- - Quick Stock, 智能貨品運營平臺;
- - Quick Decision,智能決策平臺;
官方站點:
數據中臺官網 https://dp.alibaba.com
釘釘溝通群和微信公眾號
原文鏈接:https://developer.aliyun.com/article/781287?
版權聲明:本文內容由阿里云實名注冊用戶自發貢獻,版權歸原作者所有,阿里云開發者社區不擁有其著作權,亦不承擔相應法律責任。具體規則請查看《阿里云開發者社區用戶服務協議》和《阿里云開發者社區知識產權保護指引》。如果您發現本社區中有涉嫌抄襲的內容,填寫侵權投訴表單進行舉報,一經查實,本社區將立刻刪除涉嫌侵權內容。總結
- 上一篇: 开发效率提升15倍!批流融合实时平台在好
- 下一篇: mPaas 厂商 push 不通排查指南