[Spoj]Counting Divisors (cube)
來自FallDream的博客,未經允許,請勿轉載,謝謝。
?
設d(x)表示x的約數個數,求$\sum_{i=1}^{n}d(i^{3})$
?? ? There are 5 Input files.? ?
? ? - Input #1: 1≤N≤10000, TL = 1s.
? ? - Input #2: 1≤T≤300, 1≤N≤10^8, TL = 20s.
? ? - Input #3: 1≤T≤75, 1≤N≤10^9, TL = 20s.
? ? - Input #4: 1≤T≤15, 1≤N≤10^10, TL = 20s.
? ? - Input #5: 1≤T≤2, 1≤N≤10^11, TL = 20s.
? ??
$i^{3}$的約數個數$d(i^{3})$是一個積性函數,所以轉而求$d(x)=\prod{F(pi^{ci})}$,其中$F ( pk ^ {ck} )=3ck+1$
可以直接洲閣篩 學了一天大概懂了 順便抄了個模板
-----
gi表示1-i中與前j個質數互質的數字的F之和
fi表示1-i中由小于根號n的后j個質數組成的數字的F之和
容易得出轉移方程 $$g[i][j]=g[i][j]-F(pk)g[\frac{i}{pk}][j-1]$$
$$ f[i][j]=f[i][j-1]+\sum_{ck>=1}F(pk^{ck})f[\frac{i}{pk^{ck}}][j]$$
顯然i只有根號種取值 對于每個根號n以內的質數都要轉移,復雜度$O(\frac{n}{\log n})$
考慮優化,顯然$p_{j+1}>i$的時候,g[i][j]=4(3*1+1)
所以當$pj^{2}>i$的時候,g[i][j]=g[i][j-1]+F(pi) 可以不用轉移,用的時候補上那一段即可。
之所以把f的狀態表示成"后j個",也是出于這個目的?
這樣的復雜度近似是$O(\frac{n^{\frac{3}{4}}}{logn})$
然后線篩出根號n以內的F[],答案是$f[n]+\sum_{i=1}^{\sqrt{n}}F[i]g[\frac{n}{i}]$
#include<iostream> #include<cstdio> #include<cmath> #define MN 320000 #define ll long long using namespace std; inline ll read() {ll x = 0; char ch = getchar();while(ch < '0' || ch > '9') ch = getchar();while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x; }int s[MN+5],num=0,last[MN+5],l[MN+5],l0[MN+5],sq,P,N[MN+5]; ll f0[MN+5],f[MN+5],g0[MN+5],g[MN+5],d[MN+5],n; bool b[MN+5];void CalcF() {for(int i=1;i<=sq;++i) f[i]=f0[i]=1;for(int i=P-1;i;--i){for(int j=1;j<=sq&&l[j]>i;++j){ll now=(n/j)/s[i];for(int tms=4;now;now/=s[i],tms+=3){if(now<=sq) f[j]+=tms*(f0[now]+4*(max(0,N[now]-max(i+1,l0[now])+1)));else f[j]+=tms*(f[n/now]+4*max(0,P-max(i+1,l[n/now])));}}for(int j=sq;j&&l0[j]>i;--j){ll now=j/s[i];for(int tms=4;now;tms+=3,now/=s[i])f0[j]+=tms*(f0[now]+4*max(0,N[now]-max(i+1,l0[now])+1));}}for(int i=1;i<=sq;++i) f[i]+=4*(P-l[i]); }void CalcG() {for(int i=1;i<=sq;++i)g0[i]=i,g[i]=n/i;for(int i=1;i<P;++i){for(int j=1;j<=sq&&l[j]>i;++j){ll now=n/j/s[i];if(now<=sq) g[j]-=g0[now]-max(0,i-l0[now]);else g[j]-=g[n/now]-max(0,i-l[n/now]);}for(int j=sq;j&&l0[j]>i;--j)g0[j]-=g0[j/s[i]]-max(0,i-l0[j/s[i]]);}for(int i=1;i<=sq;++i) g[i]-=P-l[i]; }int main() {d[1]=1;for(int i=2;i<=MN;++i){if(!b[i]) s[++num]=last[i]=i;for(int j=1;s[j]*i<=MN;++j){b[s[j]*i]=1,last[s[j]*i]=s[j];if(i%s[j]==0) break;}int sum=1,tms,p;for(int j=i;j>1;){tms=0;p=last[j];for(;j%p==0;j/=p,++tms);sum*=(tms*3+1);}d[i]=sum;N[i]=N[i-1]+(!b[i]);}for(int T=read();T;--T){n=read();sq=sqrt(n);l[sq+1]=0;for(P=1;1LL*s[P]*s[P]<=n;++P);for(int i=1;i<=sq;++i)for(l0[i]=l0[i-1];1LL*s[l0[i]]*s[l0[i]]<=i;++l0[i]);for(int i=sq;i;--i)for(l[i]=l[i+1];1LL*s[l[i]]*s[l[i]]<=n/i;++l[i]);CalcF();CalcG();ll ans=f[1];for(int i=1;i<=sq;++i)ans+=4*d[i]*(g[i]-1);printf("%lld\n",ans);}return 0; }轉載于:https://www.cnblogs.com/FallDream/p/divcnt3.html
總結
以上是生活随笔為你收集整理的[Spoj]Counting Divisors (cube)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【单词】常见单词含义的辨异(emulat
- 下一篇: CSS border-image属性