python多进程写入mysql_Python实现 多进程导入CSV数据到 MySQL
前段時間幫同事處理了一個把 CSV 數據導入到 MySQL 的需求。兩個很大的 CSV 文件, 分別有 3GB、2100 萬條記錄和 7GB、3500 萬條記錄。對于這個量級的數據,用簡單的單進程/單線程導入 會耗時很久,最終用了多進程的方式來實現。具體過程不贅述,記錄一下幾個要點:
批量插入而不是逐條插入
為了加快插入速度,先不要建索引
生產者和消費者模型,主進程讀文件,多個 worker 進程執行插入
注意控制 worker 的數量,避免對 MySQL 造成太大的壓力
注意處理臟數據導致的異常
原始數據是 GBK 編碼,所以還要注意轉換成 UTF-8
用 click 封裝命令行工具
具體的代碼實現如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import codecs
import csv
import logging
import multiprocessing
import os
import warnings
import click
import MySQLdb
import sqlalchemy
warnings.filterwarnings('ignore', category=MySQLdb.Warning)
# 批量插入的記錄數量
BATCH = 5000
DB_URI = 'mysql://root@localhost:3306/example?charset=utf8'
engine = sqlalchemy.create_engine(DB_URI)
def get_table_cols(table):
sql = 'SELECT * FROM `{table}` LIMIT 0'.format(table=table)
res = engine.execute(sql)
return res.keys()
def insert_many(table, cols, rows, cursor):
sql = 'INSERT INTO `{table}` ({cols}) VALUES ({marks})'.format(
table=table,
cols=', '.join(cols),
marks=', '.join(['%s'] * len(cols)))
cursor.execute(sql, *rows)
logging.info('process %s inserted %s rows into table %s', os.getpid(), len(rows), table)
def insert_worker(table, cols, queue):
rows = []
# 每個子進程創建自己的 engine 對象
cursor = sqlalchemy.create_engine(DB_URI)
while True:
row = queue.get()
if row is None:
if rows:
insert_many(table, cols, rows, cursor)
break
rows.append(row)
if len(rows) == BATCH:
insert_many(table, cols, rows, cursor)
rows = []
def insert_parallel(table, reader, w=10):
cols = get_table_cols(table)
# 數據隊列,主進程讀文件并往里寫數據,worker 進程從隊列讀數據
# 注意一下控制隊列的大小,避免消費太慢導致堆積太多數據,占用過多內存
queue = multiprocessing.Queue(maxsize=w*BATCH*2)
workers = []
for i in range(w):
p = multiprocessing.Process(target=insert_worker, args=(table, cols, queue))
p.start()
workers.append(p)
logging.info('starting # %s worker process, pid: %s...', i + 1, p.pid)
dirty_data_file = './{}_dirty_rows.csv'.format(table)
xf = open(dirty_data_file, 'w')
writer = csv.writer(xf, delimiter=reader.dialect.delimiter)
for line in reader:
# 記錄并跳過臟數據: 鍵值數量不一致
if len(line) != len(cols):
writer.writerow(line)
continue
# 把 None 值替換為 'NULL'
clean_line = [None if x == 'NULL' else x for x in line]
# 往隊列里寫數據
queue.put(tuple(clean_line))
if reader.line_num % 500000 == 0:
logging.info('put %s tasks into queue.', reader.line_num)
xf.close()
# 給每個 worker 發送任務結束的信號
logging.info('send close signal to worker processes')
for i in range(w):
queue.put(None)
for p in workers:
p.join()
def convert_file_to_utf8(f, rv_file=None):
if not rv_file:
name, ext = os.path.splitext(f)
if isinstance(name, unicode):
name = name.encode('utf8')
rv_file = '{}_utf8{}'.format(name, ext)
logging.info('start to process file %s', f)
with open(f) as infd:
with open(rv_file, 'w') as outfd:
lines = []
loop = 0
chunck = 200000
first_line = infd.readline().strip(codecs.BOM_UTF8).strip() + '\n'
lines.append(first_line)
for line in infd:
clean_line = line.decode('gb18030').encode('utf8')
clean_line = clean_line.rstrip() + '\n'
lines.append(clean_line)
if len(lines) == chunck:
outfd.writelines(lines)
lines = []
loop += 1
logging.info('processed %s lines.', loop * chunck)
outfd.writelines(lines)
logging.info('processed %s lines.', loop * chunck + len(lines))
@click.group()
def cli():
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')
@cli.command('gbk_to_utf8')
@click.argument('f')
def convert_gbk_to_utf8(f):
convert_file_to_utf8(f)
@cli.command('load')
@click.option('-t', '--table', required=True, help='表名')
@click.option('-i', '--filename', required=True, help='輸入文件')
@click.option('-w', '--workers', default=10, help='worker 數量,默認 10')
def load_fac_day_pro_nos_sal_table(table, filename, workers):
with open(filename) as fd:
fd.readline() # skip header
reader = csv.reader(fd)
insert_parallel(table, reader, w=workers)
if __name__ == '__main__':
cli()
以上就是本文給大家分享的全部沒人了,希望大家能夠喜歡
希望與廣大網友互動??
點此進行留言吧!
總結
以上是生活随笔為你收集整理的python多进程写入mysql_Python实现 多进程导入CSV数据到 MySQL的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: tcp分包传图片 如何还原_技术控丨超详
- 下一篇: 河南洛阳计算机操作题,洛阳中招理化生实验