kmean python实现
生活随笔
收集整理的這篇文章主要介紹了
kmean python实现
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
機器學(xué)習(xí)實戰(zhàn)一書 kMeans 代碼
偽代碼:
數(shù)據(jù)
import matplotlib.pyplot as plt import numpy as np datMat = np.random.random((100, 2))距離函數(shù)
def distEclud(vecA, vecB):return np.sqrt(np.sum(np.power(vecA - vecB, 2)))#初始聚類中心
聚類中心坐標范圍應(yīng)為數(shù)據(jù)樣本的最小值到最大值之間
聚類算法實現(xiàn)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):# 獲取數(shù)據(jù)集樣本數(shù)m = np.shape(dataSet)[0]# 初始化一個(m,2)全零矩陣clusterAssment = np.mat(np.zeros((m, 2)))#用于存儲每個樣本的類別,和到聚類中心的最小距離# 創(chuàng)建初始的k個質(zhì)心向量初始聚類中心centroids = createCent(dataSet, k)# 聚類結(jié)果是否發(fā)生變化的布爾類型clusterChanged = True# 只要聚類結(jié)果一直發(fā)生變化,就一直執(zhí)行聚類算法,直至所有數(shù)據(jù)點聚類結(jié)果不發(fā)生變化while clusterChanged:# 聚類結(jié)果變化布爾類型置為FalseclusterChanged = False# 遍歷數(shù)據(jù)集每一個樣本向量for i in range(m):# 初始化最小距離為正無窮,最小距離對應(yīng)的索引為-1minDist = float('inf')minIndex = -1# 循環(huán)k個類的質(zhì)心for j in range(k):# 計算數(shù)據(jù)點到質(zhì)心的歐氏距離distJI = distMeas(centroids[j, :], dataSet[i, :])# 如果距離小于當(dāng)前最小距離if distJI < minDist:# 當(dāng)前距離為最小距離,最小距離對應(yīng)索引應(yīng)為j(第j個類)minDist = distJIminIndex = j# 當(dāng)前聚類結(jié)果中第i個樣本的聚類結(jié)果發(fā)生變化:布爾值置為True,繼續(xù)聚類算法clusterAssment存儲的是類別和距離,如果后來的類別和先一輪得到的類別不一樣,則執(zhí)行if clusterAssment[i, 0] != minIndex:clusterChanged = True# 更新當(dāng)前變化樣本的聚類結(jié)果和平方誤差clusterAssment[i, :] = minIndex, minDist ** 2# 遍歷每一個質(zhì)心for cent in range(k):# 將數(shù)據(jù)集中所有屬于當(dāng)前質(zhì)心類的樣本通過條件過濾篩選出來ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0].A == cent)[0]]# 計算這些數(shù)據(jù)的均值(axis=0:求列均值),作為該類質(zhì)心向量centroids[cent, :] = np.mean(ptsInClust, axis=0)# 返回k個聚類,聚類結(jié)果及誤差return centroids, clusterAssment#結(jié)果繪圖
def plotData():# 導(dǎo)入數(shù)據(jù)datMat = np.random.random((100, 2))# 進行k-means算法其中k為3myCentroids, clustAssing = kMeans(datMat, 3)clustAssing = clustAssing.tolist()myCentroids = myCentroids.tolist()xcord = [[], [], [], []]ycord = [[], [], [], []]datMat = datMat.tolist()m = len(clustAssing)for i in range(m):if int(clustAssing[i][0]) == 0:xcord[0].append(datMat[i][0])ycord[0].append(datMat[i][1])elif int(clustAssing[i][0]) == 1:xcord[1].append(datMat[i][0])ycord[1].append(datMat[i][1])elif int(clustAssing[i][0]) == 2:xcord[2].append(datMat[i][0])ycord[2].append(datMat[i][1])fig = plt.figure()ax = fig.add_subplot(111)# 繪制樣本點ax.scatter(xcord[0], ycord[0], s=30, c='b', marker='*', alpha=.5)ax.scatter(xcord[1], ycord[1], s=30, c='r', marker='D', alpha=.5)ax.scatter(xcord[2], ycord[2], s=30, c='c', marker='>', alpha=.5)# 繪制質(zhì)心ax.scatter(myCentroids[0][0], myCentroids[0][1], s=100, c='k', marker='+', alpha=.5)ax.scatter(myCentroids[1][0], myCentroids[1][1], s=100, c='k', marker='+', alpha=.5)ax.scatter(myCentroids[2][0], myCentroids[2][1], s=100, c='k', marker='+', alpha=.5)plt.title('shuju kmeans')plt.xlabel('X')plt.show()if __name__ == '__main__':plotData()總結(jié)
以上是生活随笔為你收集整理的kmean python实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 电磁吸盘发热是什么原因?
- 下一篇: 淄阳江话怎么读?