久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME

發布時間:2024/10/8 编程问答 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report Generation With Alternate Learning

Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems

Link:?http://arxiv.org/abs/2108.05067

Abstract

Medical imaging technologies, including computed tomography (CT) or chestX-Ray (CXR), are largely employed to facilitate the diagnosis of the COVID-19.Since manual report writing is usually too time-consuming, a more intelligentauxiliary medical system that could generate medical reports automatically andimmediately is urgently needed. In this article, we propose to use the medicalvisual language BERT (Medical-VLBERT) model to identify the abnormality on theCOVID-19 scans and generate the medical report automatically based on thedetected lesion regions. To produce more accurate medical reports and minimizethe visual-and-linguistic differences, this model adopts an alternate learningstrategy with two procedures that are knowledge pretraining and transferring.To be more precise, the knowledge pretraining procedure is to memorize theknowledge from medical texts, while the transferring procedure is to utilizethe acquired knowledge for professional medical sentences generations throughobservations of medical images. In practice, for automatic medical reportgeneration on the COVID-19 cases, we constructed a dataset of 368 medicalfindings in Chinese and 1104 chest CT scans from The First Affiliated Hospitalof Jinan University, Guangzhou, China, and The Fifth Affiliated Hospital of SunYat-sen University, Zhuhai, China. Besides, to alleviate the insufficiency ofthe COVID-19 training samples, our model was first trained on the large-scaleChinese CX-CHR dataset and then transferred to the COVID-19 CT dataset forfurther fine-tuning. The experimental results showed that Medical-VLBERTachieved state-of-the-art performances on terminology prediction and reportgeneration with the Chinese COVID-19 CT dataset and the CX-CHR dataset. TheChinese COVID-19 CT dataset is available at https://covid19ct.github.io/.

Person Re-identification via Attention Pyramid

Comment: Accepted by IEEE Transcations on Image Processing.?

Code:?https://github.com/CHENGY12/APNet

Link:?http://arxiv.org/abs/2108.05340

Abstract

In this paper, we propose an attention pyramid method for personre-identification. Unlike conventional attention-based methods which only learna global attention map, our attention pyramid exploits the attention regions ina multi-scale manner because human attention varies with different scales. Ourattention pyramid imitates the process of human visual perception which tendsto notice the foreground person over the cluttered background, and furtherfocus on the specific color of the shirt with close observation. Specifically,we describe our attention pyramid by a "split-attend-merge-stack" principle. Wefirst split the features into multiple local parts and learn the correspondingattentions. Then, we merge local attentions and stack these merged attentionswith the residual connection as an attention pyramid. The proposed attentionpyramid is a lightweight plug-and-play module that can be applied tooff-the-shelf models. We implement our attention pyramid method in twodifferent attention mechanisms including channel-wise attention and spatialattention. We evaluate our method on four largescale person re-identificationbenchmarks including Market-1501, DukeMTMC, CUHK03, and MSMT17. Experimentalresults demonstrate the superiority of our method, which outperforms thestate-of-the-art methods by a large margin with limited computational cost.

Towards Interpretable Deep Networks for Monocular Depth Estimation

Comment: Accepted by ICCV2021

Link:?http://arxiv.org/abs/2108.05312

Abstract

Deep networks for Monocular Depth Estimation (MDE) have achieved promisingperformance recently and it is of great importance to further understand theinterpretability of these networks. Existing methods attempt to provide posthocexplanations by investigating visual cues, which may not explore the internalrepresentations learned by deep networks. In this paper, we find that somehidden units of the network are selective to certain ranges of depth, and thussuch behavior can be served as a way to interpret the internal representations.Based on our observations, we quantify the interpretability of a deep MDEnetwork by the depth selectivity of its hidden units. Moreover, we then proposea method to train interpretable MDE deep networks without changing theiroriginal architectures, by assigning a depth range for each unit to select.Experimental results demonstrate that our method is able to enhance theinterpretability of deep MDE networks by largely improving the depthselectivity of their units, while not harming or even improving the depthestimation accuracy. We further provide a comprehensive analysis to show thereliability of selective units, the applicability of our method on differentlayers, models, and datasets, and a demonstration on analysis of model error.Source code and models are available athttps://github.com/youzunzhi/InterpretableMDE .

Video Transformer for Deepfake Detection with Incremental Learning

Comment: Accepted at ACM International Conference on Multimedia, October 20 to ?24, 2021, Virtual Event, China

Link:?http://arxiv.org/abs/2108.05307

Abstract

Face forgery by deepfake is widely spread over the internet and this raisessevere societal concerns. In this paper, we propose a novel video transformerwith incremental learning for detecting deepfake videos. To better align theinput face images, we use a 3D face reconstruction method to generate UVtexture from a single input face image. The aligned face image can also providepose, eyes blink and mouth movement information that cannot be perceived in theUV texture image, so we use both face images and their UV texture maps toextract the image features. We present an incremental learning strategy tofine-tune the proposed model on a smaller amount of data and achieve betterdeepfake detection performance. The comprehensive experiments on various publicdeepfake datasets demonstrate that the proposed video transformer model withincremental learning achieves state-of-the-art performance in the deepfakevideo detection task with enhanced feature learning from the sequenced data.

ConvNets vs. Transformers: Whose Visual Representations are More Transferable?

Comment: Accepted by ICCV 2021 Workshop on Multi-Task Learning in Computer ?Vision (DeepMTL)

Link:?http://arxiv.org/abs/2108.05305

Abstract

Vision transformers have attracted much attention from computer visionresearchers as they are not restricted to the spatial inductive bias ofConvNets. However, although Transformer-based backbones have achieved muchprogress on ImageNet classification, it is still unclear whether the learnedrepresentations are as transferable as or even more transferable than ConvNets'features. To address this point, we systematically investigate the transferlearning ability of ConvNets and vision transformers in 15 single-task andmulti-task performance evaluations. Given the strong correlation between theperformance of pre-trained models and transfer learning, we include 2 residualConvNets (i.e., R-101x3 and R-152x4) and 3 Transformer-based visual backbones(i.e., ViT-B, ViT-L and Swin-B), which have close error rates on ImageNet, thatindicate similar transfer learning performance on downstream datasets. ?We observe consistent advantages of Transformer-based backbones on 13downstream tasks (out of 15), including but not limited to fine-grainedclassification, scene recognition (classification, segmentation and depthestimation), open-domain classification, face recognition, etc. Morespecifically, we find that two ViT models heavily rely on whole networkfine-tuning to achieve performance gains while Swin Transformer does not havesuch a requirement. Moreover, vision transformers behave more robustly inmulti-task learning, i.e., bringing more improvements when managing mutuallybeneficial tasks and reducing performance losses when tackling irrelevanttasks. We hope our discoveries can facilitate the exploration and exploitationof vision transformers in the future.

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution

Comment: Accepted by ICCV2021.?

Code: https://github.com/JingyunLiang/MANet

Link:?http://arxiv.org/abs/2108.05302

Abstract

Existing blind image super-resolution (SR) methods mostly assume blur kernelsare spatially invariant across the whole image. However, such an assumption israrely applicable for real images whose blur kernels are usually spatiallyvariant due to factors such as object motion and out-of-focus. Hence, existingblind SR methods would inevitably give rise to poor performance in realapplications. To address this issue, this paper proposes a mutual affinenetwork (MANet) for spatially variant kernel estimation. Specifically, MANethas two distinctive features. First, it has a moderate receptive field so as tokeep the locality of degradation. Second, it involves a new mutual affineconvolution (MAConv) layer that enhances feature expressiveness withoutincreasing receptive field, model size and computation burden. This is madepossible through exploiting channel interdependence, which applies each channelsplit with an affine transformation module whose input are the rest channelsplits. Extensive experiments on synthetic and real images show that theproposed MANet not only performs favorably for both spatially variant andinvariant kernel estimation, but also leads to state-of-the-art blind SRperformance when combined with non-blind SR methods.

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling

Comment: Accepted by ICCV2021.?

Code: https://github.com/JingyunLiang/HCFlow

Link:?http://arxiv.org/abs/2108.05301

Abstract

Normalizing flows have recently demonstrated promising results for low-levelvision tasks. For image super-resolution (SR), it learns to predict diversephoto-realistic high-resolution (HR) images from the low-resolution (LR) imagerather than learning a deterministic mapping. For image rescaling, it achieveshigh accuracy by jointly modelling the downscaling and upscaling processes.While existing approaches employ specialized techniques for these two tasks, weset out to unify them in a single formulation. In this paper, we propose thehierarchical conditional flow (HCFlow) as a unified framework for image SR andimage rescaling. More specifically, HCFlow learns a bijective mapping betweenHR and LR image pairs by modelling the distribution of the LR image and therest high-frequency component simultaneously. In particular, the high-frequencycomponent is conditional on the LR image in a hierarchical manner. To furtherenhance the performance, other losses such as perceptual loss and GAN loss arecombined with the commonly used negative log-likelihood loss in training.Extensive experiments on general image SR, face image SR and image rescalinghave demonstrated that the proposed HCFlow achieves state-of-the-artperformance in terms of both quantitative metrics and visual quality.

Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

Comment: Camera-Ready Version for ICCV 2021

Link:?http://arxiv.org/abs/2108.05249

Abstract

This work addresses the challenging task of LiDAR-based 3D object detectionin foggy weather. Collecting and annotating data in such a scenario is verytime, labor and cost intensive. In this paper, we tackle this problem bysimulating physically accurate fog into clear-weather scenes, so that theabundant existing real datasets captured in clear weather can be repurposed forour task. Our contributions are twofold: 1) We develop a physically valid fogsimulation method that is applicable to any LiDAR dataset. This unleashes theacquisition of large-scale foggy training data at no extra cost. Thesepartially synthetic data can be used to improve the robustness of severalperception methods, such as 3D object detection and tracking or simultaneouslocalization and mapping, on real foggy data. 2) Through extensive experimentswith several state-of-the-art detection approaches, we show that our fogsimulation can be leveraged to significantly improve the performance for 3Dobject detection in the presence of fog. Thus, we are the first to providestrong 3D object detection baselines on the Seeing Through Fog dataset. Ourcode is available at www.trace.ethz.ch/lidar_fog_simulation.

ProAI: An Efficient Embedded AI Hardware for Automotive Applications - a Benchmark Study

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05170

Abstract

Development in the field of Single Board Computers (SBC) have been increasingfor several years. They provide a good balance between computing performanceand power consumption which is usually required for mobile platforms, likeapplication in vehicles for Advanced Driver Assistance Systems (ADAS) andAutonomous Driving (AD). However, there is an ever-increasing need of morepowerful and efficient SBCs which can run power intensive Deep Neural Networks(DNNs) in real-time and can also satisfy necessary functional safetyrequirements such as Automotive Safety Integrity Level (ASIL). ProAI is beingdeveloped by ZF mainly to run powerful and efficient applications such asmultitask DNNs and on top of that it also has the required safety certificationfor AD. In this work, we compare and discuss state of the art SBC on the basisof power intensive multitask DNN architecture called Multitask-CenterNet withrespect to performance measures such as, FPS and power efficiency. As anautomotive supercomputer, ProAI delivers an excellent combination ofperformance and efficiency, managing nearly twice the number of FPS per wattthan a modern workstation laptop and almost four times compared to the JetsonNano. Furthermore, it was also shown that there is still power in reserve forfurther and more complex tasks on the ProAI, based on the CPU and GPUutilization during the benchmark.

Efficient Surfel Fusion Using Normalised Information Distance

Comment: 4 pages, 4 figures, presented at CVPR 2019 Workshop on 3D Scene ?Understanding for Vision, Graphics, and Robotics

Link:?http://arxiv.org/abs/2108.05163

Abstract

We present a new technique that achieves a significant reduction in thequantity of measurements required for a fusion based dense 3D mapping system toconverge to an accurate, de-noised surface reconstruction. This is achievedthrough the use of a Normalised Information Distance metric, that computes thenovelty of the information contained in each incoming frame with respect to thereconstruction, and avoids fusing those frames that exceed a redundancythreshold. This provides a principled approach for opitmising the trade-offbetween surface reconstruction accuracy and the computational cost ofprocessing frames. The technique builds upon the ElasticFusion (EF) algorithmwhere we report results of the technique's scalability and the accuracy of theresultant maps by applying it to both the ICL-NUIM and TUM RGB-D datasets.These results demonstrate the capabilities of the approach in performingaccurate surface reconstructions whilst utilising a fraction of the frames whencompared to the original EF algorithm.

Zero-Shot Domain Adaptation with a Physics Prior

Comment: ICCV 2021 Oral presentation.?

Code: https://github.com/Attila94/CIConv

Link:?http://arxiv.org/abs/2108.05137

Abstract

We explore the zero-shot setting for day-night domain adaptation. Thetraditional domain adaptation setting is to train on one domain and adapt tothe target domain by exploiting unlabeled data samples from the test set. Asgathering relevant test data is expensive and sometimes even impossible, weremove any reliance on test data imagery and instead exploit a visual inductiveprior derived from physics-based reflection models for domain adaptation. Wecast a number of color invariant edge detectors as trainable layers in aconvolutional neural network and evaluate their robustness to illuminationchanges. We show that the color invariant layer reduces the day-nightdistribution shift in feature map activations throughout the network. Wedemonstrate improved performance for zero-shot day to night domain adaptationon both synthetic as well as natural datasets in various tasks, includingclassification, segmentation and place recognition.

M3D-VTON: A Monocular-to-3D Virtual Try-On Network

Comment: Accepted at ICCV 2021

Link:?http://arxiv.org/abs/2108.05126

Abstract

Virtual 3D try-on can provide an intuitive and realistic view for onlineshopping and has a huge potential commercial value. However, existing 3Dvirtual try-on methods mainly rely on annotated 3D human shapes and garmenttemplates, which hinders their applications in practical scenarios. 2D virtualtry-on approaches provide a faster alternative to manipulate clothed humans,but lack the rich and realistic 3D representation. In this paper, we propose anovel Monocular-to-3D Virtual Try-On Network (M3D-VTON) that builds on themerits of both 2D and 3D approaches. By integrating 2D information efficientlyand learning a mapping that lifts the 2D representation to 3D, we make thefirst attempt to reconstruct a 3D try-on mesh only taking the target clothingand a person image as inputs. The proposed M3D-VTON includes three modules: 1)The Monocular Prediction Module (MPM) that estimates an initial full-body depthmap and accomplishes 2D clothes-person alignment through a novel two-stagewarping procedure; 2) The Depth Refinement Module (DRM) that refines theinitial body depth to produce more detailed pleat and face characteristics; 3)The Texture Fusion Module (TFM) that fuses the warped clothing with thenon-target body part to refine the results. We also construct a high-qualitysynthesized Monocular-to-3D virtual try-on dataset, in which each person imageis associated with a front and a back depth map. Extensive experimentsdemonstrate that the proposed M3D-VTON can manipulate and reconstruct the 3Dhuman body wearing the given clothing with compelling details and is moreefficient than other 3D approaches.

Representation Learning for Remote Sensing: An Unsupervised Sensor Fusion Approach

Comment: Work completed in 2019 and submitted to ICLR in ?2020.

Code: ?https://github.com/descarteslabs/contrastive_sensor_fusion.?

Data: ?https://storage.cloud.google.com/public-published-datasets/osm_example_dataset.zip?folder=true&organizationId=272688069953

Link:?http://arxiv.org/abs/2108.05094

Abstract

In the application of machine learning to remote sensing, labeled data isoften scarce or expensive, which impedes the training of powerful models likedeep convolutional neural networks. Although unlabeled data is abundant, recentself-supervised learning approaches are ill-suited to the remote sensingdomain. In addition, most remote sensing applications currently use only asmall subset of the multi-sensor, multi-channel information available,motivating the need for fused multi-sensor representations. We propose a newself-supervised training objective, Contrastive Sensor Fusion, which exploitscoterminous data from multiple sources to learn useful representations of everypossible combination of those sources. This method uses information commonacross multiple sensors and bands by training a single model to produce arepresentation that remains similar when any subset of its input channels isused. Using a dataset of 47 million unlabeled coterminous image triplets, wetrain an encoder to produce semantically meaningful representations from anypossible combination of channels from the input sensors. These representationsoutperform fully supervised ImageNet weights on a remote sensing classificationtask and improve as more sensors are fused. Our code is available athttps://storage.cloud.google.com/public-published-datasets/csf_code.zip.

Multi-Source Fusion and Automatic Predictor Selection for Zero-Shot Video Object Segmentation

Comment: This work was accepted as ACM MM 2021 oral

Link:?http://arxiv.org/abs/2108.05076

Abstract

Location and appearance are the key cues for video object segmentation. Manysources such as RGB, depth, optical flow and static saliency can provide usefulinformation about the objects. However, existing approaches only utilize theRGB or RGB and optical flow. In this paper, we propose a novel multi-sourcefusion network for zero-shot video object segmentation. With the help ofinteroceptive spatial attention module (ISAM), spatial importance of eachsource is highlighted. Furthermore, we design a feature purification module(FPM) to filter the inter-source incompatible features. By the ISAM and FPM,the multi-source features are effectively fused. In addition, we put forward anautomatic predictor selection network (APS) to select the better prediction ofeither the static saliency predictor or the moving object predictor in order toprevent over-reliance on the failed results caused by low-quality optical flowmaps. Extensive experiments on three challenging public benchmarks (i.e.DAVIS$_{16}$, Youtube-Objects and FBMS) show that the proposed model achievescompelling performance against the state-of-the-arts. The source code will bepublicly available at\textcolor{red}{\url{https://github.com/Xiaoqi-Zhao-DLUT/Multi-Source-APS-ZVOS}}.

MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05060

Abstract

Multitask learning is a common approach in machine learning, which allows totrain multiple objectives with a shared architecture. It has been shown that bytraining multiple tasks together inference time and compute resources can besaved, while the objectives performance remains on a similar or even higherlevel. However, in perception related multitask networks only closely relatedtasks can be found, such as object detection, instance and semanticsegmentation or depth estimation. Multitask networks with diverse tasks andtheir effects with respect to efficiency on one another are not well studied.In this paper we augment the CenterNet anchor-free approach for trainingmultiple diverse perception related tasks together, including the task ofobject detection and semantic segmentation as well as human pose estimation. Werefer to this DNN as Multitask-CenterNet (MCN). Additionally, we studydifferent MCN settings for efficiency. The MCN can perform several tasks atonce while maintaining, and in some cases even exceeding, the performancevalues of its corresponding single task networks. More importantly, the MCNarchitecture decreases inference time and reduces network size when compared toa composition of single task networks.

Rethinking Coarse-to-Fine Approach in Single Image Deblurring

Comment: Accepted by IEEE International Conference on Computer Vision (ICCV) ?2021

Link:?http://arxiv.org/abs/2108.05054

Abstract

Coarse-to-fine strategies have been extensively used for the architecturedesign of single image deblurring networks. Conventional methods typicallystack sub-networks with multi-scale input images and gradually improvesharpness of images from the bottom sub-network to the top sub-network,yielding inevitably high computational costs. Toward a fast and accuratedeblurring network design, we revisit the coarse-to-fine strategy and present amulti-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinctfeatures. First, the single encoder of the MIMO-UNet takes multi-scale inputimages to ease the difficulty of training. Second, the single decoder of theMIMO-UNet outputs multiple deblurred images with different scales to mimicmulti-cascaded U-nets using a single U-shaped network. Last, asymmetric featurefusion is introduced to merge multi-scale features in an efficient manner.Extensive experiments on the GoPro and RealBlur datasets demonstrate that theproposed network outperforms the state-of-the-art methods in terms of bothaccuracy and computational complexity. Source code is available for researchpurposes at https://github.com/chosj95/MIMO-UNet.

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization

Comment: Accepted by ICCV 2021 (Oral).?

Code: https://github.com/Pilhyeon

Link:?http://arxiv.org/abs/2108.05029

Abstract

We tackle the problem of localizing temporal intervals of actions with only asingle frame label for each action instance for training. Owing to labelsparsity, existing work fails to learn action completeness, resulting infragmentary action predictions. In this paper, we propose a novel framework,where dense pseudo-labels are generated to provide completeness guidance forthe model. Concretely, we first select pseudo background points to supplementpoint-level action labels. Then, by taking the points as seeds, we search forthe optimal sequence that is likely to contain complete action instances whileagreeing with the seeds. To learn completeness from the obtained sequence, weintroduce two novel losses that contrast action instances with background onesin terms of action score and feature similarity, respectively. Experimentalresults demonstrate that our completeness guidance indeed helps the model tolocate complete action instances, leading to large performance gains especiallyunder high IoU thresholds. Moreover, we demonstrate the superiority of ourmethod over existing state-of-the-art methods on four benchmarks: THUMOS'14,GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably torecent fully-supervised methods, at the 6 times cheaper annotation cost. Ourcode is available at https://github.com/Pilhyeon.

Prototype Completion for Few-Shot Learning

Comment: Extended version of 'Prototype Completion with Primitive Knowledge ?for Few-Shot Learning' in CVPR2021

Link:?http://arxiv.org/abs/2108.05010

Abstract

Few-shot learning aims to recognize novel classes with few examples.Pre-training based methods effectively tackle the problem by pre-training afeature extractor and then fine-tuning it through the nearest centroid basedmeta-learning. However, results show that the fine-tuning step makes marginalimprovements. In this paper, 1) we figure out the reason, i.e., in thepre-trained feature space, the base classes already form compact clusters whilenovel classes spread as groups with large variances, which implies thatfine-tuning feature extractor is less meaningful; 2) instead of fine-tuningfeature extractor, we focus on estimating more representative prototypes.Consequently, we propose a novel prototype completion based meta-learningframework. This framework first introduces primitive knowledge (i.e.,class-level part or attribute annotations) and extracts representative featuresfor seen attributes as priors. Second, a part/attribute transfer network isdesigned to learn to infer the representative features for unseen attributes assupplementary priors. Finally, a prototype completion network is devised tolearn to complete prototypes with these priors. Moreover, to avoid theprototype completion error, we further develop a Gaussian based prototypefusion strategy that fuses the mean-based and completed prototypes byexploiting the unlabeled samples. Extensive experiments show that our method:(i) obtains more accurate prototypes; (ii) achieves superior performance onboth inductive and transductive FSL settings.

Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning

Comment: Accepted to RecSys'21

Link:?http://arxiv.org/abs/2108.05342

Abstract

Modeling tap or click sequences of users on a mobile device can improve ourunderstandings of interaction behavior and offers opportunities for UIoptimization by recommending next element the user might want to click on. Weanalyzed a large-scale dataset of over 20 million clicks from more than 4,000mobile users who opted in. We then designed a deep learning model that predictsthe next element that the user clicks given the user's click history, thestructural information of the UI screen, and the current context such as thetime of the day. We thoroughly investigated the deep model by comparing it witha set of baseline methods based on the dataset. The experiments show that ourmodel achieves 48% and 71% accuracy (top-1 and top-3) for predicting nextclicks based on a held-out dataset of test users, which significantlyoutperformed all the baseline methods with a large margin. We discussed a fewscenarios for integrating the model in mobile interaction and how users canpotentially benefit from the model.

Estimation of Fair Ranking Metrics with Incomplete Judgments

Comment: Published in Proceedings of the Web Conference 2021 (WWW '21)

Link:?http://arxiv.org/abs/2108.05152

Abstract

There is increasing attention to evaluating the fairness of search systemranking decisions. These metrics often consider the membership of items toparticular groups, often identified using protected attributes such as genderor ethnicity. To date, these metrics typically assume the availability andcompleteness of protected attribute labels of items. However, the protectedattributes of individuals are rarely present, limiting the application of fairranking metrics in large scale systems. In order to address this problem, wepropose a sampling strategy and estimation technique for four fair rankingmetrics. We formulate a robust and unbiased estimator which can operate evenwith very limited number of labeled items. We evaluate our approach using bothsimulated and real world data. Our experimental results demonstrate that ourmethod can estimate this family of fair ranking metrics and provides a robust,reliable alternative to exhaustive or random data annotation.

Cooperative Learning for Noisy Supervision

Comment: ICME 2021 Oral

Link:?http://arxiv.org/abs/2108.05092

Abstract

Learning with noisy labels has gained the enormous interest in the robustdeep learning area. Recent studies have empirically disclosed that utilizingdual networks can enhance the performance of single network but withouttheoretic proof. In this paper, we propose Cooperative Learning (CooL)framework for noisy supervision that analytically explains the effects ofleveraging dual or multiple networks. Specifically, the simple but efficientcombination in CooL yields a more reliable risk minimization for unseen cleandata. A range of experiments have been conducted on several benchmarks withboth synthetic and real-world settings. Extensive results indicate that CooLoutperforms several state-of-the-art methods.

ULTRA: An Unbiased Learning To Rank Algorithm Toolbox

Comment: 10 pages, 6 figures, CIKM conference

Link:?http://arxiv.org/abs/2108.05073

Abstract

Learning to rank systems has become an important aspect of our daily life.However, the implicit user feedback that is used to train many learning to rankmodels is usually noisy and suffered from user bias (i.e., position bias).Thus, obtaining an unbiased model using biased feedback has become an importantresearch field for IR. Existing studies on unbiased learning to rank (ULTR) canbe generalized into two families-algorithms that attain unbiasedness withlogged data, offline learning, and algorithms that achieve unbiasedness byestimating unbiased parameters with real-time user interactions, namely onlinelearning. While there exist many algorithms from both families, there lacks aunified way to compare and benchmark them. As a result, it can be challengingfor researchers to choose the right technique for their problems or for peoplewho are new to the field to learn and understand existing algorithms. To solvethis problem, we introduced ULTRA, which is a flexible, extensible, and easilyconfigure ULTR toolbox. Its key features include support for multiple ULTRalgorithms with configurable hyperparameters, a variety of built-in clickmodels that can be used separately to simulate clicks, different ranking modelarchitecture and evaluation metrics, and simple learning to rank pipelinecreation. In this paper, we discuss the general framework of ULTR, brieflydescribe the algorithms in ULTRA, detailed the structure, and pipeline of thetoolbox. We experimented on all the algorithms supported by ultra and showedthat the toolbox performance is reasonable. Our toolbox is an importantresource for researchers to conduct experiments on ULTR algorithms withdifferent configurations as well as testing their own algorithms with thesupported features.

Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder

Comment: Accepted at ICCV2021

Link:?http://arxiv.org/abs/2108.05028

Abstract

State of the art (SOTA) few-shot learning (FSL) methods suffer significantperformance drop in the presence of domain differences between source andtarget datasets. The strong discrimination ability on the source dataset doesnot necessarily translate to high classification accuracy on the targetdataset. In this work, we address this cross-domain few-shot learning (CDFSL)problem by boosting the generalization capability of the model. Specifically,we teach the model to capture broader variations of the feature distributionswith a novel noise-enhanced supervised autoencoder (NSAE). NSAE trains themodel by jointly reconstructing inputs and predicting the labels of inputs aswell as their reconstructed pairs. Theoretical analysis based on intra-classcorrelation (ICC) shows that the feature embeddings learned from NSAE havestronger discrimination and generalization abilities in the target domain. Wealso take advantage of NSAE structure and propose a two-step fine-tuningprocedure that achieves better adaption and improves classification performancein the target domain. Extensive experiments and ablation studies are conductedto demonstrate the effectiveness of the proposed method. Experimental resultsshow that our proposed method consistently outperforms SOTA methods undervarious conditions.

LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop Advertising

Comment: Accepted in CIKM 2021

Link:?http://arxiv.org/abs/2108.04993

Abstract

Mobile digital billboards are an effective way to augment brand-awareness.Among various such mobile billboards, taxicab rooftop devices are emerging inthe market as a brand new media. Motov is a leading company in South Korea inthe taxicab rooftop advertising market. In this work, we present a lightweightyet accurate deep learning-based method to predict taxicabs' next locations tobetter prepare for targeted advertising based on demographic information oflocations. Considering the fact that next POI recommendation datasets arefrequently sparse, we design our presented model based on neural ordinary differential equations (NODEs), which are known to be robust tosparse/incorrect input, with several enhancements. Our model, which we callLightMove, has a larger prediction accuracy, a smaller number of parameters,and/or a smaller training/inference time, when evaluating with variousdatasets, in comparison with state-of-the-art models.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | TNNLS/ICCV/TIP/ACM MM/CIKM/WWW/ICME的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

国产精品亚洲а∨无码播放麻豆 | 人人妻人人澡人人爽欧美一区九九 | 久久综合九色综合欧美狠狠 | 呦交小u女精品视频 | 丰满少妇弄高潮了www | 伊人久久大香线焦av综合影院 | 综合人妻久久一区二区精品 | 欧美人与禽猛交狂配 | 国产午夜无码精品免费看 | 亚洲欧洲无卡二区视頻 | 熟妇激情内射com | 日本大乳高潮视频在线观看 | 欧美大屁股xxxxhd黑色 | 亚洲一区二区三区在线观看网站 | 久久亚洲国产成人精品性色 | 大屁股大乳丰满人妻 | 亚洲热妇无码av在线播放 | 亚洲成av人片天堂网无码】 | av无码不卡在线观看免费 | 亚洲日韩av一区二区三区四区 | 无码免费一区二区三区 | 国产欧美亚洲精品a | 精品久久久久香蕉网 | 亚洲色欲久久久综合网东京热 | 成人精品一区二区三区中文字幕 | 男人扒开女人内裤强吻桶进去 | 夜夜高潮次次欢爽av女 | 免费播放一区二区三区 | 亚洲热妇无码av在线播放 | 日韩少妇内射免费播放 | 宝宝好涨水快流出来免费视频 | 国产猛烈高潮尖叫视频免费 | www一区二区www免费 | 亚洲日本在线电影 | 日韩少妇内射免费播放 | 少妇人妻大乳在线视频 | 少妇邻居内射在线 | 亚洲爆乳精品无码一区二区三区 | 国内精品人妻无码久久久影院蜜桃 | 国产乡下妇女做爰 | 超碰97人人做人人爱少妇 | 国产在线无码精品电影网 | 丝袜足控一区二区三区 | 中文字幕+乱码+中文字幕一区 | 亚洲午夜福利在线观看 | 亚洲精品综合一区二区三区在线 | 亚洲一区二区三区在线观看网站 | 亚洲 高清 成人 动漫 | 精品国产av色一区二区深夜久久 | 中文字幕乱码中文乱码51精品 | 亚洲精品美女久久久久久久 | 成年美女黄网站色大免费全看 | 亚洲一区二区三区含羞草 | 人妻aⅴ无码一区二区三区 | 国产亚洲日韩欧美另类第八页 | 狠狠躁日日躁夜夜躁2020 | 激情爆乳一区二区三区 | 国产网红无码精品视频 | 少妇人妻偷人精品无码视频 | 俄罗斯老熟妇色xxxx | 免费中文字幕日韩欧美 | 任你躁在线精品免费 | 久久久亚洲欧洲日产国码αv | 未满成年国产在线观看 | 欧美日本精品一区二区三区 | a在线亚洲男人的天堂 | 亚洲国产精品一区二区第一页 | 性生交片免费无码看人 | 波多野结衣乳巨码无在线观看 | 97久久超碰中文字幕 | 国模大胆一区二区三区 | 久久精品中文字幕一区 | 狠狠cao日日穞夜夜穞av | 亚洲 日韩 欧美 成人 在线观看 | 荫蒂添的好舒服视频囗交 | 性开放的女人aaa片 | 国产高清不卡无码视频 | 永久免费观看美女裸体的网站 | 欧美兽交xxxx×视频 | 性欧美熟妇videofreesex | 久久久久人妻一区精品色欧美 | 国内精品久久久久久中文字幕 | 欧美黑人性暴力猛交喷水 | 爽爽影院免费观看 | 麻豆国产丝袜白领秘书在线观看 | 国产精品久久久一区二区三区 | 中国女人内谢69xxxxxa片 | 中文无码精品a∨在线观看不卡 | 东京热无码av男人的天堂 | 精品无码一区二区三区的天堂 | 人妻少妇被猛烈进入中文字幕 | 欧美精品在线观看 | 性色欲网站人妻丰满中文久久不卡 | 国产精品多人p群无码 | 大地资源网第二页免费观看 | 亚洲 激情 小说 另类 欧美 | 久久国产精品偷任你爽任你 | 国产真实伦对白全集 | 四虎永久在线精品免费网址 | 人人妻人人澡人人爽欧美一区 | 亚洲一区二区三区国产精华液 | 国产九九九九九九九a片 | 97资源共享在线视频 | 黑人巨大精品欧美一区二区 | 九月婷婷人人澡人人添人人爽 | 激情内射日本一区二区三区 | 国产成人综合美国十次 | 精品少妇爆乳无码av无码专区 | 99久久精品国产一区二区蜜芽 | 亚洲国产高清在线观看视频 | 久久久亚洲欧洲日产国码αv | 丰满岳乱妇在线观看中字无码 | 国产偷抇久久精品a片69 | 狠狠噜狠狠狠狠丁香五月 | 亚洲日韩av片在线观看 | 午夜性刺激在线视频免费 | 国产精品第一国产精品 | 亚洲自偷自拍另类第1页 | 性做久久久久久久免费看 | 东京无码熟妇人妻av在线网址 | 超碰97人人做人人爱少妇 | 亚洲国产精品成人久久蜜臀 | 亚洲精品无码国产 | 国内丰满熟女出轨videos | 久久久久久久久蜜桃 | av无码不卡在线观看免费 | 狠狠色丁香久久婷婷综合五月 | 国产免费久久久久久无码 | 狂野欧美性猛xxxx乱大交 | 国产精品久久久久久久影院 | 国产人妻人伦精品1国产丝袜 | 思思久久99热只有频精品66 | 欧美日韩精品 | 国产在线精品一区二区高清不卡 | 精品久久8x国产免费观看 | 国产午夜视频在线观看 | 国产精品手机免费 | 午夜精品一区二区三区在线观看 | 亚洲欧美中文字幕5发布 | 无码国内精品人妻少妇 | 天堂亚洲2017在线观看 | 丰满人妻被黑人猛烈进入 | 久久亚洲精品成人无码 | 内射巨臀欧美在线视频 | 精品人人妻人人澡人人爽人人 | 丰满人妻翻云覆雨呻吟视频 | 噜噜噜亚洲色成人网站 | 丰满人妻精品国产99aⅴ | 国产高潮视频在线观看 | 性做久久久久久久久 | 欧美国产日韩久久mv | 思思久久99热只有频精品66 | 国产亚洲人成a在线v网站 | 野外少妇愉情中文字幕 | 成人动漫在线观看 | 欧美喷潮久久久xxxxx | 精品久久久无码人妻字幂 | 精品国产aⅴ无码一区二区 | 四虎国产精品免费久久 | 国产亚洲精品久久久闺蜜 | 高潮毛片无遮挡高清免费视频 | 动漫av网站免费观看 | 国产精品igao视频网 | 久久久成人毛片无码 | 久青草影院在线观看国产 | 国产av无码专区亚洲awww | 人人妻人人澡人人爽人人精品浪潮 | 55夜色66夜色国产精品视频 | 亚洲综合无码久久精品综合 | 国产精品99爱免费视频 | 亚洲精品久久久久久久久久久 | 人妻天天爽夜夜爽一区二区 | 精品国精品国产自在久国产87 | 国产精品资源一区二区 | 熟女俱乐部五十路六十路av | 两性色午夜免费视频 | 国产极品美女高潮无套在线观看 | 免费无码肉片在线观看 | 国内精品人妻无码久久久影院 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产精品久久久久影院嫩草 | 国产9 9在线 | 中文 | 亚洲s码欧洲m码国产av | 99久久人妻精品免费二区 | 国产卡一卡二卡三 | 国产免费无码一区二区视频 | 久久久国产精品无码免费专区 | 中文字幕日韩精品一区二区三区 | 国产性生大片免费观看性 | 中文字幕无码热在线视频 | 亚洲综合无码一区二区三区 | 久久精品国产大片免费观看 | 色综合久久网 | 婷婷丁香五月天综合东京热 | 麻豆国产人妻欲求不满 | 久久精品中文字幕一区 | 国产精品嫩草久久久久 | 日本爽爽爽爽爽爽在线观看免 | 亚洲欧美精品伊人久久 | 丰满岳乱妇在线观看中字无码 | 欧美 亚洲 国产 另类 | 网友自拍区视频精品 | 人妻体内射精一区二区三四 | 在线播放无码字幕亚洲 | 国产av剧情md精品麻豆 | 久久国语露脸国产精品电影 | 在线 国产 欧美 亚洲 天堂 | 免费无码肉片在线观看 | 77777熟女视频在线观看 а天堂中文在线官网 | 国产精品18久久久久久麻辣 | 2019nv天堂香蕉在线观看 | 色妞www精品免费视频 | 午夜理论片yy44880影院 | 色爱情人网站 | 欧美人与动性行为视频 | 国产片av国语在线观看 | 国产成人无码a区在线观看视频app | 曰韩无码二三区中文字幕 | 日本在线高清不卡免费播放 | 2019午夜福利不卡片在线 | 国产精品无码一区二区桃花视频 | 日日天干夜夜狠狠爱 | 国内精品一区二区三区不卡 | 天堂一区人妻无码 | 午夜精品久久久内射近拍高清 | 成人免费视频一区二区 | 亚洲春色在线视频 | 性生交大片免费看l | 亚洲国产精品成人久久蜜臀 | 精品无码av一区二区三区 | 牛和人交xxxx欧美 | 天堂亚洲免费视频 | 无码帝国www无码专区色综合 | 色婷婷综合中文久久一本 | 国产精品久免费的黄网站 | 亚洲色欲久久久综合网东京热 | 久久久久久国产精品无码下载 | 欧美国产亚洲日韩在线二区 | 牛和人交xxxx欧美 | 亚洲男人av天堂午夜在 | 乱人伦人妻中文字幕无码 | 国产精品久久久久久亚洲毛片 | 帮老师解开蕾丝奶罩吸乳网站 | 国产麻豆精品精东影业av网站 | 国精品人妻无码一区二区三区蜜柚 | 成人欧美一区二区三区黑人免费 | 国产午夜无码视频在线观看 | 欧美日韩综合一区二区三区 | 国产高清不卡无码视频 | 无码av中文字幕免费放 | 东北女人啪啪对白 | 水蜜桃色314在线观看 | 夜精品a片一区二区三区无码白浆 | 少女韩国电视剧在线观看完整 | 午夜福利一区二区三区在线观看 | 久久久中文字幕日本无吗 | 成人亚洲精品久久久久软件 | 亚洲乱码国产乱码精品精 | 久热国产vs视频在线观看 | 精品久久久无码中文字幕 | aa片在线观看视频在线播放 | 超碰97人人做人人爱少妇 | 对白脏话肉麻粗话av | 偷窥日本少妇撒尿chinese | 日本www一道久久久免费榴莲 | 亚洲七七久久桃花影院 | 色一情一乱一伦一视频免费看 | 国产精品久久久 | 久久久久久国产精品无码下载 | 中文字幕无码免费久久9一区9 | 亚洲日韩中文字幕在线播放 | 欧美35页视频在线观看 | 欧洲精品码一区二区三区免费看 | 在线成人www免费观看视频 | 日本欧美一区二区三区乱码 | 亚洲午夜久久久影院 | 国产无av码在线观看 | 99国产欧美久久久精品 | 国产精品igao视频网 | 九九在线中文字幕无码 | 99riav国产精品视频 | 日日橹狠狠爱欧美视频 | 国产卡一卡二卡三 | 国产suv精品一区二区五 | 久久99精品国产麻豆 | 国产精品人人妻人人爽 | 国产成人久久精品流白浆 | 亚洲精品久久久久久一区二区 | 对白脏话肉麻粗话av | 亚欧洲精品在线视频免费观看 | 伊人色综合久久天天小片 | 亚洲狠狠婷婷综合久久 | 蜜臀aⅴ国产精品久久久国产老师 | 国产免费久久精品国产传媒 | 亚洲日本va午夜在线电影 | 18禁黄网站男男禁片免费观看 | 宝宝好涨水快流出来免费视频 | 青草视频在线播放 | 国产精品久久久一区二区三区 | 午夜精品一区二区三区的区别 | 久久综合激激的五月天 | 色婷婷欧美在线播放内射 | 无码精品国产va在线观看dvd | aⅴ在线视频男人的天堂 | 丰满少妇人妻久久久久久 | 国产午夜福利100集发布 | 国产精品va在线观看无码 | 小sao货水好多真紧h无码视频 | 高中生自慰www网站 | www成人国产高清内射 | 水蜜桃av无码 | 人人爽人人爽人人片av亚洲 | 久久国产精品精品国产色婷婷 | 无码帝国www无码专区色综合 | 无遮挡国产高潮视频免费观看 | 夜夜影院未满十八勿进 | 久久久久av无码免费网 | 国产成人无码一二三区视频 | 中文字幕无码免费久久99 | 国产成人无码av片在线观看不卡 | 最新版天堂资源中文官网 | 久久久久久av无码免费看大片 | 亚洲国产午夜精品理论片 | 色婷婷香蕉在线一区二区 | 国内精品人妻无码久久久影院蜜桃 | √8天堂资源地址中文在线 | 亚洲精品一区二区三区在线 | 激情爆乳一区二区三区 | 丝袜 中出 制服 人妻 美腿 | 一区二区三区乱码在线 | 欧洲 | 亚洲va中文字幕无码久久不卡 | 中文字幕无码av激情不卡 | 麻豆国产丝袜白领秘书在线观看 | 狠狠躁日日躁夜夜躁2020 | 熟妇人妻中文av无码 | 青青青手机频在线观看 | 国产av剧情md精品麻豆 | 亚洲精品国偷拍自产在线麻豆 | 曰本女人与公拘交酡免费视频 | 亚洲欧洲中文日韩av乱码 | 精品国偷自产在线 | 亚洲а∨天堂久久精品2021 | 九九久久精品国产免费看小说 | 久久伊人色av天堂九九小黄鸭 | 美女黄网站人色视频免费国产 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 天天躁夜夜躁狠狠是什么心态 | 婷婷色婷婷开心五月四房播播 | 亚洲色欲色欲欲www在线 | 国产精品国产三级国产专播 | 天堂无码人妻精品一区二区三区 | 亚洲国产成人av在线观看 | 亚洲啪av永久无码精品放毛片 | а√天堂www在线天堂小说 | 色婷婷久久一区二区三区麻豆 | 国产精品亚洲lv粉色 | 国产在线精品一区二区高清不卡 | 亚洲男女内射在线播放 | 久久久亚洲欧洲日产国码αv | 美女毛片一区二区三区四区 | 精品无码av一区二区三区 | 任你躁国产自任一区二区三区 | 国产偷抇久久精品a片69 | 成熟女人特级毛片www免费 | 久久精品女人天堂av免费观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 老熟女重囗味hdxx69 | 亚洲色偷偷偷综合网 | 日本xxxx色视频在线观看免费 | 亚洲小说春色综合另类 | 亚洲欧美国产精品久久 | 成人免费视频一区二区 | 成人影院yy111111在线观看 | 色综合久久久无码中文字幕 | 国产97在线 | 亚洲 | 亚洲精品午夜无码电影网 | 国产成人精品无码播放 | 日韩精品无码一本二本三本色 | 亚洲熟妇色xxxxx亚洲 | 麻豆av传媒蜜桃天美传媒 | 亚洲成色www久久网站 | 日本va欧美va欧美va精品 | 狠狠亚洲超碰狼人久久 | 精品久久久久久人妻无码中文字幕 | 午夜无码人妻av大片色欲 | 国产精品人人爽人人做我的可爱 | 免费看少妇作爱视频 | 牛和人交xxxx欧美 | 捆绑白丝粉色jk震动捧喷白浆 | 欧美熟妇另类久久久久久不卡 | 东京热男人av天堂 | 日本护士毛茸茸高潮 | 久久久久久久人妻无码中文字幕爆 | 成人欧美一区二区三区黑人免费 | 麻豆人妻少妇精品无码专区 | 欧美激情一区二区三区成人 | 又湿又紧又大又爽a视频国产 | 欧美肥老太牲交大战 | 日日碰狠狠躁久久躁蜜桃 | 日本熟妇人妻xxxxx人hd | 老子影院午夜精品无码 | 最新国产乱人伦偷精品免费网站 | 日韩精品久久久肉伦网站 | 女人被男人爽到呻吟的视频 | 人妻体内射精一区二区三四 | av香港经典三级级 在线 | 亚洲精品国产第一综合99久久 | 免费视频欧美无人区码 | 亚洲精品无码国产 | 男女超爽视频免费播放 | 我要看www免费看插插视频 | 波多野结衣一区二区三区av免费 | 色综合久久久久综合一本到桃花网 | 最新国产麻豆aⅴ精品无码 | 人妻与老人中文字幕 | 亚洲精品国产品国语在线观看 | 国产精品久久久一区二区三区 | 久久国产精品_国产精品 | 国产精品美女久久久 | 性欧美牲交在线视频 | 国产片av国语在线观看 | 又湿又紧又大又爽a视频国产 | 强伦人妻一区二区三区视频18 | 色综合久久网 | 伦伦影院午夜理论片 | 俺去俺来也www色官网 | 亚洲熟妇色xxxxx欧美老妇y | 乱码av麻豆丝袜熟女系列 | 狠狠色噜噜狠狠狠7777奇米 | 中国大陆精品视频xxxx | 欧美日韩色另类综合 | 国产精品.xx视频.xxtv | av在线亚洲欧洲日产一区二区 | 色窝窝无码一区二区三区色欲 | 国产成人无码区免费内射一片色欲 | 久久久精品人妻久久影视 | 日韩精品久久久肉伦网站 | 永久黄网站色视频免费直播 | 亚洲午夜无码久久 | 亚洲经典千人经典日产 | 丰满人妻翻云覆雨呻吟视频 | 亚洲国产精品毛片av不卡在线 | 成人欧美一区二区三区黑人 | 大屁股大乳丰满人妻 | 国产亚洲精品精品国产亚洲综合 | 麻豆国产丝袜白领秘书在线观看 | 国产午夜亚洲精品不卡下载 | 亚洲中文字幕无码中文字在线 | 国产成人无码av在线影院 | 国产人妻精品一区二区三区不卡 | 国产精品无码成人午夜电影 | 荫蒂添的好舒服视频囗交 | 人人澡人人透人人爽 | 免费视频欧美无人区码 | 澳门永久av免费网站 | 老熟女重囗味hdxx69 | 99久久久国产精品无码免费 | 日韩成人一区二区三区在线观看 | 婷婷五月综合缴情在线视频 | 小sao货水好多真紧h无码视频 | 久久国产劲爆∧v内射 | 暴力强奷在线播放无码 | 久久久成人毛片无码 | 国内揄拍国内精品人妻 | 亚洲精品午夜无码电影网 | 天天躁日日躁狠狠躁免费麻豆 | 精品国产一区二区三区四区 | 国产疯狂伦交大片 | 久久综合色之久久综合 | 99riav国产精品视频 | 中文字幕av无码一区二区三区电影 | 国产精品资源一区二区 | 久久精品人人做人人综合 | av香港经典三级级 在线 | 日本大乳高潮视频在线观看 | 欧洲熟妇精品视频 | 国产成人午夜福利在线播放 | 日韩精品成人一区二区三区 | 少妇高潮一区二区三区99 | 免费无码一区二区三区蜜桃大 | 精品人妻av区 | 亚洲国产精品美女久久久久 | 狠狠色噜噜狠狠狠狠7777米奇 | 亚洲 欧美 激情 小说 另类 | 好屌草这里只有精品 | 牲欲强的熟妇农村老妇女视频 | 国产精品久久久久9999小说 | 超碰97人人做人人爱少妇 | 99久久久国产精品无码免费 | 国产后入清纯学生妹 | 少妇一晚三次一区二区三区 | 黑人粗大猛烈进出高潮视频 | 精品午夜福利在线观看 | 老熟妇乱子伦牲交视频 | 76少妇精品导航 | 国产精品无码mv在线观看 | 亚洲国产欧美在线成人 | 精品久久久久久人妻无码中文字幕 | 亚洲精品国偷拍自产在线麻豆 | 丰满妇女强制高潮18xxxx | 少妇人妻av毛片在线看 | 久久综合给久久狠狠97色 | 丰满肥臀大屁股熟妇激情视频 | 国产精品久久久午夜夜伦鲁鲁 | 国产农村乱对白刺激视频 | 国产激情综合五月久久 | 亚洲自偷自偷在线制服 | 亚洲国产成人av在线观看 | av在线亚洲欧洲日产一区二区 | 亚洲精品www久久久 | 国产精品无码成人午夜电影 | 久久天天躁狠狠躁夜夜免费观看 | 久久国产精品_国产精品 | 亚洲一区二区三区香蕉 | 久久综合给久久狠狠97色 | 娇妻被黑人粗大高潮白浆 | 久久久www成人免费毛片 | 日韩精品无码一区二区中文字幕 | 久久aⅴ免费观看 | 中国女人内谢69xxxx | 亚洲一区二区三区在线观看网站 | 国内揄拍国内精品少妇国语 | 红桃av一区二区三区在线无码av | 无码福利日韩神码福利片 | 性生交大片免费看女人按摩摩 | 无遮挡国产高潮视频免费观看 | 十八禁真人啪啪免费网站 | 中文无码伦av中文字幕 | 国产精品无套呻吟在线 | 欧美日韩一区二区免费视频 | 熟妇女人妻丰满少妇中文字幕 | 国产精品久久久久无码av色戒 | 久久天天躁狠狠躁夜夜免费观看 | 日本一区二区更新不卡 | 黑人巨大精品欧美一区二区 | 天堂久久天堂av色综合 | 精品日本一区二区三区在线观看 | 久久久国产一区二区三区 | 俄罗斯老熟妇色xxxx | aⅴ在线视频男人的天堂 | 夫妻免费无码v看片 | 久久 国产 尿 小便 嘘嘘 | a片免费视频在线观看 | 久久久久国色av免费观看性色 | 两性色午夜视频免费播放 | 亚洲成av人片在线观看无码不卡 | 成人精品视频一区二区 | 国产成人无码午夜视频在线观看 | 丰满护士巨好爽好大乳 | 九九热爱视频精品 | 精品熟女少妇av免费观看 | 国产 浪潮av性色四虎 | 国产人妖乱国产精品人妖 | 巨爆乳无码视频在线观看 | 免费视频欧美无人区码 | 男女超爽视频免费播放 | 天天躁日日躁狠狠躁免费麻豆 | 红桃av一区二区三区在线无码av | 午夜无码人妻av大片色欲 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 日本大香伊一区二区三区 | 亚洲 高清 成人 动漫 | 一本久道久久综合婷婷五月 | 成年美女黄网站色大免费全看 | 黑人巨大精品欧美一区二区 | 香港三级日本三级妇三级 | 亚洲狠狠婷婷综合久久 | 国产凸凹视频一区二区 | 欧美人与善在线com | 亚洲日本va午夜在线电影 | 白嫩日本少妇做爰 | 综合网日日天干夜夜久久 | 亚洲啪av永久无码精品放毛片 | 午夜性刺激在线视频免费 | 精品欧洲av无码一区二区三区 | 久久久国产一区二区三区 | 国产精品无码一区二区三区不卡 | 一二三四社区在线中文视频 | 亚洲娇小与黑人巨大交 | 无码人妻丰满熟妇区五十路百度 | 天堂亚洲2017在线观看 | 伊人久久大香线焦av综合影院 | 男女下面进入的视频免费午夜 | 成人精品一区二区三区中文字幕 | 欧美丰满少妇xxxx性 | 乱中年女人伦av三区 | 中文字幕人妻丝袜二区 | 初尝人妻少妇中文字幕 | 老子影院午夜精品无码 | 国产精华av午夜在线观看 | 欧美日韩在线亚洲综合国产人 | 国产成人精品优优av | 久久无码中文字幕免费影院蜜桃 | 久久国产精品精品国产色婷婷 | 2019午夜福利不卡片在线 | 免费观看激色视频网站 | 欧美日本精品一区二区三区 | 国产福利视频一区二区 | 国产一区二区三区精品视频 | 国产午夜福利100集发布 | 99er热精品视频 | 四虎永久在线精品免费网址 | 国产高清不卡无码视频 | 又大又紧又粉嫩18p少妇 | 一二三四社区在线中文视频 | 国产无遮挡又黄又爽又色 | 亚洲大尺度无码无码专区 | 蜜臀av无码人妻精品 | 精品久久8x国产免费观看 | 亚洲中文字幕乱码av波多ji | 麻豆国产丝袜白领秘书在线观看 | 国产黑色丝袜在线播放 | 午夜福利一区二区三区在线观看 | 激情人妻另类人妻伦 | 国产亚洲日韩欧美另类第八页 | 动漫av一区二区在线观看 | 午夜熟女插插xx免费视频 | 欧美兽交xxxx×视频 | av在线亚洲欧洲日产一区二区 | 少妇性荡欲午夜性开放视频剧场 | 久久aⅴ免费观看 | 日产国产精品亚洲系列 | 久久国产精品_国产精品 | 国产亲子乱弄免费视频 | 国产国产精品人在线视 | 少妇性荡欲午夜性开放视频剧场 | 久久久久久av无码免费看大片 | 一本久道久久综合狠狠爱 | 亚洲爆乳大丰满无码专区 | 久久人人爽人人爽人人片ⅴ | 日本xxxx色视频在线观看免费 | 秋霞成人午夜鲁丝一区二区三区 | 暴力强奷在线播放无码 | 丰满肥臀大屁股熟妇激情视频 | 无码中文字幕色专区 | 久久亚洲国产成人精品性色 | 又大又硬又黄的免费视频 | 国产情侣作爱视频免费观看 | 国产精品沙发午睡系列 | 午夜精品久久久内射近拍高清 | 精品无人区无码乱码毛片国产 | 久久亚洲中文字幕无码 | 国产卡一卡二卡三 | 国内揄拍国内精品少妇国语 | 日本乱人伦片中文三区 | 97se亚洲精品一区 | 国产激情无码一区二区 | 一个人免费观看的www视频 | 日本大香伊一区二区三区 | 日日摸夜夜摸狠狠摸婷婷 | 国产69精品久久久久app下载 | 欧美国产日韩久久mv | 色婷婷久久一区二区三区麻豆 | 成人无码视频免费播放 | 成年美女黄网站色大免费视频 | 无码一区二区三区在线 | 国产亚洲精品久久久久久久久动漫 | 性做久久久久久久久 | 在线成人www免费观看视频 | 六十路熟妇乱子伦 | 国产在线aaa片一区二区99 | 77777熟女视频在线观看 а天堂中文在线官网 | 久久综合九色综合97网 | 国产suv精品一区二区五 | 男人和女人高潮免费网站 | 精品偷拍一区二区三区在线看 | 男女性色大片免费网站 | 理论片87福利理论电影 | 亚洲成av人片天堂网无码】 | 2020最新国产自产精品 | 欧美老熟妇乱xxxxx | 久久天天躁夜夜躁狠狠 | 精品乱码久久久久久久 | 婷婷五月综合激情中文字幕 | 亚洲一区二区三区四区 | 国产精品无套呻吟在线 | 日产精品高潮呻吟av久久 | 牲欲强的熟妇农村老妇女视频 | 美女张开腿让人桶 | 福利一区二区三区视频在线观看 | 亚洲成在人网站无码天堂 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 未满小14洗澡无码视频网站 | 成人性做爰aaa片免费看 | 国产精品二区一区二区aⅴ污介绍 | 男人的天堂2018无码 | 欧美日韩综合一区二区三区 | 欧美日韩亚洲国产精品 | 亚洲一区二区三区播放 | 亚洲色欲色欲欲www在线 | 女高中生第一次破苞av | 国产亚洲精品久久久ai换 | 日本一卡2卡3卡四卡精品网站 | 日韩在线不卡免费视频一区 | 成人试看120秒体验区 | 无遮挡国产高潮视频免费观看 | 免费人成网站视频在线观看 | 欧美性猛交内射兽交老熟妇 | 丰满人妻精品国产99aⅴ | 久久精品人人做人人综合试看 | 成在人线av无码免观看麻豆 | 亚洲精品一区二区三区在线 | 国产无遮挡又黄又爽免费视频 | 欧美性猛交xxxx富婆 | 日本丰满护士爆乳xxxx | 亚洲中文字幕在线观看 | 国产超碰人人爽人人做人人添 | 乱人伦人妻中文字幕无码 | 日日天干夜夜狠狠爱 | 久久国产精品二国产精品 | 欧美国产日产一区二区 | 欧美黑人巨大xxxxx | 久久久中文字幕日本无吗 | 免费男性肉肉影院 | 欧美高清在线精品一区 | 一本色道久久综合亚洲精品不卡 | 中文字幕无码人妻少妇免费 | 无码人妻精品一区二区三区下载 | 麻豆精品国产精华精华液好用吗 | 成年美女黄网站色大免费视频 | 精品少妇爆乳无码av无码专区 | 久久精品丝袜高跟鞋 | 欧美大屁股xxxxhd黑色 | 亚洲综合在线一区二区三区 | 国产精品国产三级国产专播 | 内射老妇bbwx0c0ck | 精品一区二区三区无码免费视频 | 国产在线精品一区二区高清不卡 | 国精品人妻无码一区二区三区蜜柚 | 欧美野外疯狂做受xxxx高潮 | 国产内射爽爽大片视频社区在线 | 永久免费精品精品永久-夜色 | 小sao货水好多真紧h无码视频 | 欧美熟妇另类久久久久久不卡 | 自拍偷自拍亚洲精品被多人伦好爽 | 久久国产36精品色熟妇 | 中文亚洲成a人片在线观看 | 久久综合网欧美色妞网 | 日本饥渴人妻欲求不满 | 女人被爽到呻吟gif动态图视看 | 亚洲日韩av一区二区三区四区 | 精品久久久无码中文字幕 | 国产凸凹视频一区二区 | 国产亚洲精品久久久久久国模美 | 天天躁夜夜躁狠狠是什么心态 | 欧美成人免费全部网站 | 粗大的内捧猛烈进出视频 | 久久人人爽人人爽人人片av高清 | 999久久久国产精品消防器材 | 亚洲无人区一区二区三区 | 欧洲熟妇色 欧美 | 日韩少妇内射免费播放 | 综合人妻久久一区二区精品 | 人人妻人人澡人人爽欧美一区 | 国产精品久久久久7777 | 欧美午夜特黄aaaaaa片 | 国产99久久精品一区二区 | 日本饥渴人妻欲求不满 | 成人女人看片免费视频放人 | 中文字幕av伊人av无码av | 亚洲国产成人a精品不卡在线 | 成熟女人特级毛片www免费 | 国产精品亚洲一区二区三区喷水 | 日本一区二区更新不卡 | a片在线免费观看 | 一本久道久久综合狠狠爱 | 九一九色国产 | 国产无av码在线观看 | 在线а√天堂中文官网 | 欧美xxxx黑人又粗又长 | 日日鲁鲁鲁夜夜爽爽狠狠 | 97se亚洲精品一区 | 在线看片无码永久免费视频 | 色综合天天综合狠狠爱 | 兔费看少妇性l交大片免费 | 麻豆果冻传媒2021精品传媒一区下载 | 久久99精品国产.久久久久 | 亚洲中文字幕成人无码 | 少妇无码av无码专区在线观看 | 四十如虎的丰满熟妇啪啪 | 国产在线aaa片一区二区99 | 精品国产av色一区二区深夜久久 | 国产特级毛片aaaaaaa高清 | 免费观看激色视频网站 | 亚洲中文字幕无码中字 | 色婷婷综合激情综在线播放 | 蜜桃av抽搐高潮一区二区 | 天堂久久天堂av色综合 | 精品国产国产综合精品 | 中文字幕av无码一区二区三区电影 | 日韩av无码中文无码电影 | 久久久久成人精品免费播放动漫 | 人人妻人人澡人人爽欧美精品 | 成人一在线视频日韩国产 | 精品一区二区三区无码免费视频 | aⅴ在线视频男人的天堂 | 亚洲国产精品久久人人爱 | 图片小说视频一区二区 | 日韩精品无码一区二区中文字幕 | 兔费看少妇性l交大片免费 | 免费网站看v片在线18禁无码 | 国产成人无码av片在线观看不卡 | 无码国产乱人伦偷精品视频 | 精品国产一区二区三区av 性色 | 亚洲精品中文字幕久久久久 | 综合激情五月综合激情五月激情1 | 日日干夜夜干 | 精品国产乱码久久久久乱码 | 欧美精品无码一区二区三区 | 欧美老熟妇乱xxxxx | 久久久久成人精品免费播放动漫 | 无码人妻精品一区二区三区不卡 | 在线观看免费人成视频 | 台湾无码一区二区 | 国产在线精品一区二区高清不卡 | 少妇无码一区二区二三区 | 乱码午夜-极国产极内射 | 亚洲熟妇色xxxxx欧美老妇y | 亚洲精品鲁一鲁一区二区三区 | 亚洲精品成a人在线观看 | 熟女少妇人妻中文字幕 | 2019nv天堂香蕉在线观看 | 丰满诱人的人妻3 | 亚洲精品一区二区三区在线观看 | 国精品人妻无码一区二区三区蜜柚 | 国产成人精品必看 | 国产精品无码久久av | 国产av人人夜夜澡人人爽麻豆 | 欧美人与牲动交xxxx | 麻豆成人精品国产免费 | 人妻少妇精品无码专区二区 | 亚洲精品一区三区三区在线观看 | 大屁股大乳丰满人妻 | 狂野欧美性猛交免费视频 | 中文字幕无码免费久久99 | 国产精品亚洲一区二区三区喷水 | 色诱久久久久综合网ywww | 日本一区二区三区免费高清 | 亚洲成av人片在线观看无码不卡 | 女人高潮内射99精品 | 成人aaa片一区国产精品 | 久久精品人妻少妇一区二区三区 | 亚洲国产成人av在线观看 | 国模大胆一区二区三区 | 日韩av无码一区二区三区不卡 | 性欧美牲交在线视频 | 水蜜桃亚洲一二三四在线 | 丰满人妻翻云覆雨呻吟视频 | 久久国内精品自在自线 | 九九热爱视频精品 | 无套内射视频囯产 | 亚洲日韩精品欧美一区二区 | 爱做久久久久久 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 精品久久久无码中文字幕 | 麻豆国产人妻欲求不满谁演的 | 亚洲精品中文字幕久久久久 | 成人欧美一区二区三区黑人 | 玩弄少妇高潮ⅹxxxyw | 人妻少妇精品无码专区动漫 | 少妇无码av无码专区在线观看 | 大地资源网第二页免费观看 | 99久久精品午夜一区二区 | 久久综合香蕉国产蜜臀av | 国产成人午夜福利在线播放 | 一本大道伊人av久久综合 | 国产两女互慰高潮视频在线观看 | 亚洲欧美日韩综合久久久 | 亚洲国产欧美日韩精品一区二区三区 | 玩弄少妇高潮ⅹxxxyw | av香港经典三级级 在线 | 日韩亚洲欧美精品综合 | 国产精品沙发午睡系列 | 精品国产一区二区三区av 性色 | 粗大的内捧猛烈进出视频 | 久久亚洲a片com人成 | 综合人妻久久一区二区精品 | 永久免费观看美女裸体的网站 | 亚洲自偷精品视频自拍 | 亚洲va欧美va天堂v国产综合 | 亚洲国产精品久久人人爱 | 亚洲一区二区观看播放 | 日日麻批免费40分钟无码 | 国模大胆一区二区三区 | 强伦人妻一区二区三区视频18 | av小次郎收藏 | 久久精品人人做人人综合试看 | 亚洲欧美综合区丁香五月小说 | 一本久久伊人热热精品中文字幕 | а√天堂www在线天堂小说 | 亚洲一区二区三区偷拍女厕 | 亚洲gv猛男gv无码男同 | 我要看www免费看插插视频 | 日韩 欧美 动漫 国产 制服 | 东京热男人av天堂 | 99国产精品白浆在线观看免费 | 精品国产一区二区三区av 性色 | 亚洲第一网站男人都懂 | 女人和拘做爰正片视频 | 精品厕所偷拍各类美女tp嘘嘘 | 亚洲色在线无码国产精品不卡 | 久久无码人妻影院 | 永久免费精品精品永久-夜色 | 亚洲性无码av中文字幕 | 国产亚洲美女精品久久久2020 | 亚洲成av人影院在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 水蜜桃亚洲一二三四在线 | 宝宝好涨水快流出来免费视频 | 狠狠色噜噜狠狠狠狠7777米奇 | 久久午夜无码鲁丝片秋霞 | 人人妻人人澡人人爽人人精品浪潮 | 日韩欧美中文字幕在线三区 | 日日麻批免费40分钟无码 | 午夜福利一区二区三区在线观看 | 国产乱人无码伦av在线a | 亚洲综合久久一区二区 | 国内精品一区二区三区不卡 | 亚洲成av人影院在线观看 | 丰满护士巨好爽好大乳 | 久久综合九色综合欧美狠狠 | 天天爽夜夜爽夜夜爽 | 无码人妻丰满熟妇区毛片18 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 欧美性黑人极品hd | 2019nv天堂香蕉在线观看 | 日韩人妻无码中文字幕视频 | 美女毛片一区二区三区四区 | 午夜熟女插插xx免费视频 | 久青草影院在线观看国产 | 天天拍夜夜添久久精品大 | 日韩精品一区二区av在线 | 又大又紧又粉嫩18p少妇 | 精品国产国产综合精品 | 鲁一鲁av2019在线 | 理论片87福利理论电影 | 任你躁在线精品免费 | 在线观看欧美一区二区三区 | 大色综合色综合网站 | 国产乱人伦偷精品视频 | 精品久久久久香蕉网 | 九月婷婷人人澡人人添人人爽 | 女人高潮内射99精品 | 综合人妻久久一区二区精品 | aa片在线观看视频在线播放 | 狠狠亚洲超碰狼人久久 | 国产无av码在线观看 | a国产一区二区免费入口 | 天天躁日日躁狠狠躁免费麻豆 | 精品国产一区二区三区四区在线看 | 一本无码人妻在中文字幕免费 | 久久人人爽人人爽人人片av高清 | 欧美熟妇另类久久久久久多毛 | 国产国产精品人在线视 | 无人区乱码一区二区三区 | 中文字幕人妻无码一区二区三区 | 一本久道久久综合狠狠爱 | 永久免费精品精品永久-夜色 | 人人爽人人爽人人片av亚洲 | 97夜夜澡人人双人人人喊 | 亚洲成a人片在线观看无码 | 日本免费一区二区三区最新 | 动漫av网站免费观看 | 国产av一区二区三区最新精品 | 亚洲精品国产第一综合99久久 | 久久天天躁夜夜躁狠狠 | 无码乱肉视频免费大全合集 | 亚洲国产精品毛片av不卡在线 | 日本一区二区更新不卡 | 日日碰狠狠丁香久燥 | 成人欧美一区二区三区黑人 | 久久精品人人做人人综合试看 | 精品无码一区二区三区的天堂 | 欧美性猛交内射兽交老熟妇 | 国产午夜亚洲精品不卡 | 欧洲vodafone精品性 | 婷婷五月综合激情中文字幕 | 欧美激情内射喷水高潮 | 婷婷色婷婷开心五月四房播播 | 中文字幕人妻无码一区二区三区 | 老太婆性杂交欧美肥老太 | 日本护士xxxxhd少妇 | 999久久久国产精品消防器材 | 又黄又爽又色的视频 | 精品久久久久香蕉网 | 日本高清一区免费中文视频 | 人人超人人超碰超国产 | 综合网日日天干夜夜久久 | 东京无码熟妇人妻av在线网址 | 奇米影视7777久久精品 | 精品无人区无码乱码毛片国产 | 黑森林福利视频导航 | 国产欧美精品一区二区三区 | 大胆欧美熟妇xx | 亚洲aⅴ无码成人网站国产app | 亚洲国产av美女网站 | 国产成人无码一二三区视频 | 无码中文字幕色专区 | 无码人妻久久一区二区三区不卡 | 熟妇人妻激情偷爽文 | 欧美国产亚洲日韩在线二区 | 亚洲乱码中文字幕在线 | 在线亚洲高清揄拍自拍一品区 | 人人妻人人澡人人爽人人精品浪潮 | 玩弄中年熟妇正在播放 | 狠狠色欧美亚洲狠狠色www | 少妇被粗大的猛进出69影院 | 狠狠色欧美亚洲狠狠色www | 日韩人妻无码中文字幕视频 | 久久久久久亚洲精品a片成人 | 国产精品久久久午夜夜伦鲁鲁 | 久久99精品久久久久久 | 亚洲成av人综合在线观看 | 97色伦图片97综合影院 | 国产一精品一av一免费 | 久久久成人毛片无码 | 国产精品久久久久9999小说 | 一本大道久久东京热无码av | 午夜精品久久久久久久久 | 精品国产精品久久一区免费式 | 亚洲色欲色欲欲www在线 | 图片小说视频一区二区 | 丰满护士巨好爽好大乳 | 永久免费观看美女裸体的网站 | 人妻夜夜爽天天爽三区 | 亚洲va中文字幕无码久久不卡 | 极品嫩模高潮叫床 | 色综合久久久无码中文字幕 | 中文久久乱码一区二区 | 偷窥日本少妇撒尿chinese | 国产在线一区二区三区四区五区 | 国产亚洲精品久久久久久大师 | 亚洲人成网站在线播放942 | 色婷婷综合激情综在线播放 | 成年女人永久免费看片 | 日韩欧美成人免费观看 | 欧美刺激性大交 | 国产一区二区三区日韩精品 | 水蜜桃亚洲一二三四在线 | 日韩欧美群交p片內射中文 | 中文字幕精品av一区二区五区 | 狠狠色噜噜狠狠狠狠7777米奇 | 天天拍夜夜添久久精品 | 婷婷五月综合激情中文字幕 | 一本精品99久久精品77 | 大乳丰满人妻中文字幕日本 | 国产无套粉嫩白浆在线 | 精品国产av色一区二区深夜久久 | 牲欲强的熟妇农村老妇女视频 | 亚洲成色www久久网站 | 永久免费观看国产裸体美女 | 亚洲乱码日产精品bd | 国产综合色产在线精品 | 国产精华av午夜在线观看 | 人人妻人人澡人人爽欧美一区 | 成人片黄网站色大片免费观看 | 亚洲综合伊人久久大杳蕉 | 午夜时刻免费入口 | 国产乱人伦av在线无码 | 亚洲s码欧洲m码国产av | 国产真人无遮挡作爱免费视频 | 国产亚洲视频中文字幕97精品 | 国产艳妇av在线观看果冻传媒 | 亚洲中文字幕无码一久久区 | 水蜜桃亚洲一二三四在线 | 欧美国产日产一区二区 | 国产精品美女久久久网av | 丰满人妻翻云覆雨呻吟视频 | 精品国产乱码久久久久乱码 | 无码av最新清无码专区吞精 | 熟妇人妻激情偷爽文 | 蜜臀aⅴ国产精品久久久国产老师 | 成人性做爰aaa片免费看不忠 | 成人片黄网站色大片免费观看 | 日韩精品无码一本二本三本色 | 国产办公室秘书无码精品99 | 大肉大捧一进一出好爽视频 | 亚洲娇小与黑人巨大交 | 99精品视频在线观看免费 | 久久天天躁狠狠躁夜夜免费观看 | 搡女人真爽免费视频大全 | 在线播放免费人成毛片乱码 | 高清国产亚洲精品自在久久 | 欧美激情一区二区三区成人 | 国产无遮挡又黄又爽免费视频 | aⅴ亚洲 日韩 色 图网站 播放 | 国产偷自视频区视频 | 色一情一乱一伦一视频免费看 | 精品国产青草久久久久福利 | 亚洲日韩中文字幕在线播放 | 亚洲 另类 在线 欧美 制服 | 成人无码影片精品久久久 | 粗大的内捧猛烈进出视频 | 欧美日本免费一区二区三区 | 国产精品久久久久久无码 | 夜夜高潮次次欢爽av女 | 久久亚洲a片com人成 | 伊在人天堂亚洲香蕉精品区 | 亚洲精品午夜国产va久久成人 | 国产精品-区区久久久狼 | 成人无码视频在线观看网站 | 国产精品怡红院永久免费 | 在线成人www免费观看视频 | 天天做天天爱天天爽综合网 | 成人动漫在线观看 | 欧美zoozzooz性欧美 | 男人和女人高潮免费网站 | 久久久久久久久888 | a国产一区二区免费入口 | 亚洲自偷自拍另类第1页 | 国产熟妇另类久久久久 | 一本大道伊人av久久综合 | 内射后入在线观看一区 | 国产精品va在线播放 | 精品一区二区三区无码免费视频 | 欧美日韩色另类综合 | 日韩欧美群交p片內射中文 | 精品国产麻豆免费人成网站 | 日韩欧美中文字幕公布 | 女人高潮内射99精品 | 色噜噜亚洲男人的天堂 | 成熟女人特级毛片www免费 | 国产香蕉尹人视频在线 | 成人精品视频一区二区 | 乌克兰少妇性做爰 | 国产精品丝袜黑色高跟鞋 | 精品欧美一区二区三区久久久 | 国内丰满熟女出轨videos | 动漫av网站免费观看 | 欧美黑人性暴力猛交喷水 | 中文无码成人免费视频在线观看 | 免费看少妇作爱视频 | 午夜性刺激在线视频免费 | 99久久精品无码一区二区毛片 | 中文字幕精品av一区二区五区 | 成人无码精品一区二区三区 | 装睡被陌生人摸出水好爽 | 亚洲国产一区二区三区在线观看 | 欧美人与动性行为视频 | 亚洲日韩一区二区 | 国产精品嫩草久久久久 | 亚洲啪av永久无码精品放毛片 | 熟妇人妻无乱码中文字幕 | 无码福利日韩神码福利片 | 国产口爆吞精在线视频 | 欧美亚洲日韩国产人成在线播放 | 国内精品人妻无码久久久影院 | 国产suv精品一区二区五 | 伊在人天堂亚洲香蕉精品区 | 波多野42部无码喷潮在线 | 5858s亚洲色大成网站www | 亚洲精品一区三区三区在线观看 | 国产午夜无码视频在线观看 | 亚洲日韩乱码中文无码蜜桃臀网站 | 中文精品久久久久人妻不卡 | 啦啦啦www在线观看免费视频 | 性色欲情网站iwww九文堂 | 亚洲狠狠色丁香婷婷综合 | 人妻少妇精品视频专区 | 少妇人妻av毛片在线看 | 国产精品亚洲综合色区韩国 | 亚洲国产精品一区二区第一页 | 高清无码午夜福利视频 | 正在播放老肥熟妇露脸 | 性做久久久久久久久 | 国产亚洲精品久久久ai换 | 亚洲精品国产a久久久久久 | 伊人久久大香线蕉亚洲 | 色诱久久久久综合网ywww | 久久久久久国产精品无码下载 | 图片小说视频一区二区 | 欧美亚洲日韩国产人成在线播放 | 亚洲国产成人a精品不卡在线 | 精品久久久中文字幕人妻 | 玩弄少妇高潮ⅹxxxyw | 久久久久成人精品免费播放动漫 | 欧美怡红院免费全部视频 | 亚洲性无码av中文字幕 | 97久久精品无码一区二区 | 蜜桃视频插满18在线观看 | 色综合久久88色综合天天 | 无码纯肉视频在线观看 | 日本在线高清不卡免费播放 | 亚洲高清偷拍一区二区三区 | 国产人妻精品午夜福利免费 | 国产后入清纯学生妹 | 久久www免费人成人片 | 丰满人妻一区二区三区免费视频 | 伊人色综合久久天天小片 | 亚洲の无码国产の无码步美 | 4hu四虎永久在线观看 | 成人综合网亚洲伊人 | 亚洲 日韩 欧美 成人 在线观看 | 99riav国产精品视频 | 又湿又紧又大又爽a视频国产 | 亚洲高清偷拍一区二区三区 | 精品人妻av区 | 3d动漫精品啪啪一区二区中 | 97无码免费人妻超级碰碰夜夜 | 国产香蕉97碰碰久久人人 | 精品偷自拍另类在线观看 | 无码av免费一区二区三区试看 | 高潮毛片无遮挡高清免费视频 | 人人澡人人妻人人爽人人蜜桃 | 窝窝午夜理论片影院 | 98国产精品综合一区二区三区 | 在线 国产 欧美 亚洲 天堂 | 人妻少妇精品视频专区 | 国产人妖乱国产精品人妖 | 精品国产一区二区三区四区 | 中文字幕人妻无码一夲道 | 青春草在线视频免费观看 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | www国产亚洲精品久久久日本 | 亚洲精品国产精品乱码不卡 | 熟妇人妻无码xxx视频 | 未满成年国产在线观看 | 欧美人与动性行为视频 | 亚洲综合精品香蕉久久网 | 在线播放无码字幕亚洲 | 欧洲精品码一区二区三区免费看 | 亚洲另类伦春色综合小说 | 欧美精品在线观看 | 精品无人国产偷自产在线 | 性色av无码免费一区二区三区 | 国模大胆一区二区三区 | 国产精品手机免费 | 欧美日本免费一区二区三区 | 国产女主播喷水视频在线观看 | 无码人妻少妇伦在线电影 | 国产在线一区二区三区四区五区 | 少妇被黑人到高潮喷出白浆 | 日韩精品一区二区av在线 | 人妻互换免费中文字幕 | 蜜臀aⅴ国产精品久久久国产老师 | 熟女少妇在线视频播放 | 午夜熟女插插xx免费视频 | 99riav国产精品视频 | 激情五月综合色婷婷一区二区 | 国产手机在线αⅴ片无码观看 | 国产精品无套呻吟在线 | 无码人中文字幕 | 日韩成人一区二区三区在线观看 | 久久久久免费看成人影片 | 国产偷抇久久精品a片69 | 嫩b人妻精品一区二区三区 | 麻豆国产97在线 | 欧洲 | 在线欧美精品一区二区三区 | 亚洲春色在线视频 | 少妇被黑人到高潮喷出白浆 | 色综合久久久久综合一本到桃花网 | 国产热a欧美热a在线视频 | 久久久精品国产sm最大网站 | 国产精品亚洲专区无码不卡 | 又大又硬又黄的免费视频 | www国产亚洲精品久久久日本 | 欧美真人作爱免费视频 | 婷婷五月综合缴情在线视频 | 亚洲日韩av一区二区三区中文 | 精品无码国产一区二区三区av | 99re在线播放 | 国产午夜无码精品免费看 | 无码中文字幕色专区 | 国内精品人妻无码久久久影院蜜桃 | 网友自拍区视频精品 | 久久精品女人的天堂av | 高中生自慰www网站 | 男女爱爱好爽视频免费看 | 乱人伦人妻中文字幕无码久久网 | 国内精品九九久久久精品 | 亚洲综合伊人久久大杳蕉 | 无码午夜成人1000部免费视频 | 欧美老妇与禽交 | 一区二区三区乱码在线 | 欧洲 | 亚洲毛片av日韩av无码 | 六月丁香婷婷色狠狠久久 | 精品久久综合1区2区3区激情 | 丰满肥臀大屁股熟妇激情视频 | 秋霞特色aa大片 | 老头边吃奶边弄进去呻吟 | 狠狠噜狠狠狠狠丁香五月 | 久久午夜无码鲁丝片午夜精品 | www国产亚洲精品久久久日本 | 精品国产一区二区三区四区 | 又大又硬又爽免费视频 | 又大又黄又粗又爽的免费视频 | 国产成人久久精品流白浆 | 精品一区二区三区波多野结衣 | 欧美熟妇另类久久久久久多毛 | 蜜臀av在线播放 久久综合激激的五月天 | 波多野结衣av一区二区全免费观看 | 成人无码影片精品久久久 | 国产亚洲精品精品国产亚洲综合 | 欧美人与禽猛交狂配 | 老熟妇乱子伦牲交视频 | 国产真实夫妇视频 | 全球成人中文在线 | 国产成人综合在线女婷五月99播放 | 国产精品久久久久久久9999 | 少妇的肉体aa片免费 | 日本大乳高潮视频在线观看 | 久热国产vs视频在线观看 | 99er热精品视频 | 成人毛片一区二区 | 蜜桃av抽搐高潮一区二区 | 亚洲人成人无码网www国产 | 牲欲强的熟妇农村老妇女 | 亚洲gv猛男gv无码男同 | 中文字幕无线码免费人妻 | a在线观看免费网站大全 | 精品一二三区久久aaa片 | 日韩欧美中文字幕在线三区 | 国产成人精品必看 | 国产精品无码永久免费888 | 成人精品视频一区二区三区尤物 | 亚洲日本va中文字幕 | 成人精品一区二区三区中文字幕 | 国产做国产爱免费视频 | 少妇无套内谢久久久久 | 樱花草在线社区www | 国产成人无码a区在线观看视频app | 亚洲中文字幕在线观看 | 无码任你躁久久久久久久 | 人人超人人超碰超国产 | 亚洲精品一区二区三区在线 | 亚洲成a人片在线观看无码 | 免费无码午夜福利片69 | 国产乱码精品一品二品 | 亚洲精品国偷拍自产在线麻豆 | 婷婷综合久久中文字幕蜜桃三电影 | 国产亚洲日韩欧美另类第八页 | 一本久久a久久精品vr综合 | 欧美人妻一区二区三区 | 欧美猛少妇色xxxxx | 无码人妻久久一区二区三区不卡 | 久久国产精品二国产精品 | 久久久精品成人免费观看 | 亚洲人成网站色7799 | 18精品久久久无码午夜福利 | 日本在线高清不卡免费播放 | 内射爽无广熟女亚洲 | 人人超人人超碰超国产 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 少妇激情av一区二区 | 国产免费久久久久久无码 | 色综合视频一区二区三区 | 乱人伦人妻中文字幕无码久久网 | 亚洲色大成网站www国产 | 丰满人妻精品国产99aⅴ | 帮老师解开蕾丝奶罩吸乳网站 | 高潮毛片无遮挡高清免费 | 亚洲国产精华液网站w | 亚洲天堂2017无码 | 无遮挡国产高潮视频免费观看 | 好男人www社区 | 无码人妻精品一区二区三区下载 | 丰满岳乱妇在线观看中字无码 | 精品国精品国产自在久国产87 | 中文字幕久久久久人妻 | 中国大陆精品视频xxxx | 免费观看又污又黄的网站 | 国产精品第一区揄拍无码 | 日日鲁鲁鲁夜夜爽爽狠狠 | 国产精品资源一区二区 | 国产成人精品视频ⅴa片软件竹菊 | 亚洲国产精品久久人人爱 | 欧美xxxxx精品 | 亚洲第一网站男人都懂 | 亚洲欧洲日本综合aⅴ在线 | 久久精品女人的天堂av | 日本护士xxxxhd少妇 | 狂野欧美性猛交免费视频 | 亚洲日韩中文字幕在线播放 | 国产精品久久福利网站 | 丰满护士巨好爽好大乳 | 99久久久无码国产aaa精品 | 国产成人一区二区三区在线观看 | 国产亚av手机在线观看 | 国产亚洲精品精品国产亚洲综合 | 国产香蕉尹人综合在线观看 | 成年女人永久免费看片 | 亚洲综合精品香蕉久久网 | 久久精品人妻少妇一区二区三区 | 大肉大捧一进一出视频出来呀 | 亚洲欧美日韩成人高清在线一区 | 亚洲综合精品香蕉久久网 | 麻豆蜜桃av蜜臀av色欲av | 日韩成人一区二区三区在线观看 | 天堂亚洲免费视频 | 国产成人精品优优av | 久久aⅴ免费观看 | 亚洲 a v无 码免 费 成 人 a v | 欧美老熟妇乱xxxxx | www一区二区www免费 | 红桃av一区二区三区在线无码av | a国产一区二区免费入口 | 国产尤物精品视频 | 国产精品久久久久久亚洲影视内衣 | 国产成人无码a区在线观看视频app | 国产真实夫妇视频 | 荫蒂添的好舒服视频囗交 | 水蜜桃av无码 | 久久亚洲a片com人成 | 3d动漫精品啪啪一区二区中 | 永久免费观看美女裸体的网站 | 无码人妻丰满熟妇区毛片18 | 中文字幕日产无线码一区 | 蜜桃视频韩日免费播放 | 国产人妻久久精品二区三区老狼 | 亚洲精品一区国产 | 亚洲欧美综合区丁香五月小说 | 精品国产麻豆免费人成网站 | 久久精品国产一区二区三区肥胖 | 欧美阿v高清资源不卡在线播放 | 成人一在线视频日韩国产 | 精品乱子伦一区二区三区 | 又色又爽又黄的美女裸体网站 | 日韩欧美群交p片內射中文 | 久久久久亚洲精品男人的天堂 | 成熟女人特级毛片www免费 | 熟女少妇在线视频播放 | 人妻少妇精品久久 | 色综合久久久无码中文字幕 | 日本一区二区三区免费播放 | 人人妻人人澡人人爽欧美精品 | 在线观看国产午夜福利片 | 亚洲国产精品无码一区二区三区 | 香港三级日本三级妇三级 | 99久久久无码国产精品免费 | 日韩av激情在线观看 | 久精品国产欧美亚洲色aⅴ大片 | 国产9 9在线 | 中文 | 成人免费视频一区二区 | 欧美日韩人成综合在线播放 | 成人一区二区免费视频 | 亚洲欧洲无卡二区视頻 | 成熟人妻av无码专区 | 精品人妻中文字幕有码在线 | 丝袜美腿亚洲一区二区 | 精品国产精品久久一区免费式 | 精品少妇爆乳无码av无码专区 | 日韩精品成人一区二区三区 | 蜜臀av无码人妻精品 | 久久国产精品偷任你爽任你 | 国产免费观看黄av片 | 国产色在线 | 国产 | 国产成人久久精品流白浆 | 在线播放亚洲第一字幕 | 少妇邻居内射在线 | 久久久精品国产sm最大网站 | 国产办公室秘书无码精品99 | 夜夜躁日日躁狠狠久久av | 无码av免费一区二区三区试看 | 欧美日韩精品 | 中文字幕无码视频专区 | 妺妺窝人体色www婷婷 | 国产香蕉尹人综合在线观看 | 午夜成人1000部免费视频 | www国产亚洲精品久久久日本 | 97夜夜澡人人双人人人喊 | 日韩亚洲欧美精品综合 | 极品尤物被啪到呻吟喷水 | 亚洲中文字幕在线无码一区二区 | 免费看少妇作爱视频 | 国产乱人偷精品人妻a片 | 国产在热线精品视频 | 人妻互换免费中文字幕 | 丰满少妇女裸体bbw | 欧美精品国产综合久久 | 亚洲精品国产品国语在线观看 | 亚洲精品一区二区三区在线 | 在线观看免费人成视频 | 乌克兰少妇性做爰 | 乌克兰少妇xxxx做受 | 精品偷拍一区二区三区在线看 | 国产精品99爱免费视频 | 久久久久成人片免费观看蜜芽 | 牛和人交xxxx欧美 | 无码av最新清无码专区吞精 | 一本久久伊人热热精品中文字幕 | 丰满岳乱妇在线观看中字无码 | 亚洲 a v无 码免 费 成 人 a v | 婷婷六月久久综合丁香 | 欧美成人高清在线播放 | 精品久久久无码人妻字幂 | 精品欧美一区二区三区久久久 | 婷婷六月久久综合丁香 | 午夜肉伦伦影院 | 精品无码av一区二区三区 | 国产乡下妇女做爰 | 色五月五月丁香亚洲综合网 | 国产九九九九九九九a片 | 亚洲一区二区三区播放 | 亚洲 激情 小说 另类 欧美 | av在线亚洲欧洲日产一区二区 | 欧美野外疯狂做受xxxx高潮 | 暴力强奷在线播放无码 | 亚洲精品国产a久久久久久 | 奇米影视7777久久精品 | 亚洲国产av美女网站 | 精品欧洲av无码一区二区三区 | 人妻人人添人妻人人爱 | 亚洲成a人片在线观看日本 | 纯爱无遮挡h肉动漫在线播放 | 中文字幕无码乱人伦 | 亚洲欧洲日本无在线码 | 国产香蕉97碰碰久久人人 | 国产免费久久精品国产传媒 | 熟女少妇人妻中文字幕 | 老熟妇仑乱视频一区二区 | 97无码免费人妻超级碰碰夜夜 | 国产高清av在线播放 | 亚洲欧美精品aaaaaa片 | 又色又爽又黄的美女裸体网站 | 在线а√天堂中文官网 | 黑人粗大猛烈进出高潮视频 | 色五月五月丁香亚洲综合网 | 久久综合九色综合欧美狠狠 | 国产成人一区二区三区在线观看 | 四虎影视成人永久免费观看视频 | 欧美性猛交内射兽交老熟妇 | 久久久久国色av免费观看性色 | 亚洲欧美日韩成人高清在线一区 | 免费网站看v片在线18禁无码 | 波多野结衣 黑人 | 国产成人无码专区 | 高潮喷水的毛片 | 波多野结衣av在线观看 | 十八禁真人啪啪免费网站 | 老司机亚洲精品影院无码 | 久久综合九色综合97网 | 99国产欧美久久久精品 | 东京热男人av天堂 | 免费无码av一区二区 | 亚洲精品美女久久久久久久 | 人人妻在人人 | 国产午夜无码视频在线观看 | 日本欧美一区二区三区乱码 | 人妻少妇被猛烈进入中文字幕 | 人妻少妇精品无码专区二区 | 精品国产福利一区二区 | 国产亚洲精品精品国产亚洲综合 | 国产区女主播在线观看 | 国产午夜视频在线观看 | 在线а√天堂中文官网 | 初尝人妻少妇中文字幕 | 鲁大师影院在线观看 | 国产真实乱对白精彩久久 | 欧美 丝袜 自拍 制服 另类 | 中文字幕乱码人妻二区三区 | 亚洲va欧美va天堂v国产综合 | 免费看男女做好爽好硬视频 | 欧美国产日产一区二区 | 国产精品久久久久久久9999 | 青春草在线视频免费观看 | 无码吃奶揉捏奶头高潮视频 | 亚洲综合色区中文字幕 | 少妇愉情理伦片bd | 久久综合狠狠综合久久综合88 | 无人区乱码一区二区三区 | 久久zyz资源站无码中文动漫 | 久久99精品国产.久久久久 | 鲁鲁鲁爽爽爽在线视频观看 | 亚洲熟妇色xxxxx欧美老妇y | 婷婷六月久久综合丁香 | 久久久久成人精品免费播放动漫 | 免费无码午夜福利片69 | 18精品久久久无码午夜福利 | 久久婷婷五月综合色国产香蕉 | 久久成人a毛片免费观看网站 | 无码国模国产在线观看 | 国产精品人人妻人人爽 | 国产两女互慰高潮视频在线观看 | 强奷人妻日本中文字幕 | 免费网站看v片在线18禁无码 | 国产日产欧产精品精品app | 乌克兰少妇xxxx做受 | 成人无码影片精品久久久 | 国产亚洲精品久久久ai换 | 中文字幕乱码人妻无码久久 | 亚洲成a人片在线观看无码 | 最近免费中文字幕中文高清百度 | 亚洲 欧美 激情 小说 另类 | 狠狠噜狠狠狠狠丁香五月 | yw尤物av无码国产在线观看 | 久久精品中文字幕大胸 | 亚洲爆乳精品无码一区二区三区 | 亚洲 另类 在线 欧美 制服 | 国产熟女一区二区三区四区五区 | 国产莉萝无码av在线播放 | 国产精品va在线观看无码 | 国产成人无码av片在线观看不卡 | 人人妻人人澡人人爽欧美一区 | 色婷婷久久一区二区三区麻豆 | 色情久久久av熟女人妻网站 | 国产综合久久久久鬼色 | 亚洲色在线无码国产精品不卡 | 人妻中文无码久热丝袜 | 99精品国产综合久久久久五月天 | 乌克兰少妇xxxx做受 | 亚洲精品中文字幕久久久久 | 亚洲 激情 小说 另类 欧美 | 日韩精品成人一区二区三区 | 久激情内射婷内射蜜桃人妖 | 未满成年国产在线观看 | 日日麻批免费40分钟无码 | 久久这里只有精品视频9 | aⅴ在线视频男人的天堂 | 国产精品久久久 | 久久久精品欧美一区二区免费 | 欧美黑人乱大交 | 国产高潮视频在线观看 | 久久99精品国产麻豆 | 国产婷婷色一区二区三区在线 | 国产精品va在线观看无码 | √8天堂资源地址中文在线 | 丰满人妻一区二区三区免费视频 | 中文字幕av无码一区二区三区电影 | 精品少妇爆乳无码av无码专区 | 俺去俺来也在线www色官网 | 国产亚洲精品久久久久久久久动漫 | 好爽又高潮了毛片免费下载 | 国产熟妇另类久久久久 | 久久久久se色偷偷亚洲精品av | 扒开双腿疯狂进出爽爽爽视频 | 国产精品久久久久久亚洲影视内衣 | 国产精品免费大片 | 无码精品人妻一区二区三区av | 日韩欧美中文字幕公布 | 国产激情无码一区二区app | 欧洲美熟女乱又伦 | 亚洲国产高清在线观看视频 | 99久久精品国产一区二区蜜芽 | 久久99精品久久久久久 | 欧美成人午夜精品久久久 | 两性色午夜视频免费播放 | 国产一区二区三区四区五区加勒比 | 久久视频在线观看精品 | 国产欧美亚洲精品a | 麻豆蜜桃av蜜臀av色欲av | 在教室伦流澡到高潮hnp视频 | 日本熟妇乱子伦xxxx | 国产亚洲精品久久久闺蜜 | 人人妻人人藻人人爽欧美一区 | 欧美日韩亚洲国产精品 | 精品国产一区二区三区av 性色 | 成人亚洲精品久久久久 | 日韩欧美中文字幕在线三区 | 久久久久国色av免费观看性色 | 无码人妻少妇伦在线电影 | 欧美猛少妇色xxxxx | www国产精品内射老师 | 国产区女主播在线观看 | 国产免费观看黄av片 | 国产一区二区三区精品视频 | 午夜福利试看120秒体验区 | 中文字幕人妻无码一夲道 | 国产成人精品必看 | 欧美性生交xxxxx久久久 | 亚洲小说春色综合另类 | 久热国产vs视频在线观看 | 国产成人综合在线女婷五月99播放 | 少妇人妻av毛片在线看 | 在线天堂新版最新版在线8 | 3d动漫精品啪啪一区二区中 | 青春草在线视频免费观看 | 中文字幕人妻无码一区二区三区 | 亚洲中文字幕在线无码一区二区 | 一本久久a久久精品vr综合 | 精品国产成人一区二区三区 | 真人与拘做受免费视频 | 日日干夜夜干 | 麻豆国产人妻欲求不满谁演的 | 久久综合色之久久综合 | 成人欧美一区二区三区 | 精品无码国产一区二区三区av |