久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | 35篇顶会论文:ICCV/ CIKM/ ACM MM

發布時間:2024/10/8 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | 35篇顶会论文:ICCV/ CIKM/ ACM MM 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

TSI: an Ad Text Strength Indicator using Text-to-CTR and Semantic-Ad-Similarity

Comment: Accepted for publication at CIKM 2021

Link:?http://arxiv.org/abs/2108.08226

Abstract

Coming up with effective ad text is a time consuming process, andparticularly challenging for small businesses with limited advertisingexperience. When an inexperienced advertiser onboards with a poorly written adtext, the ad platform has the opportunity to detect low performing ad text, andprovide improvement suggestions. To realize this opportunity, we propose an adtext strength indicator (TSI) which: (i) predicts the click-through-rate (CTR)for an input ad text, (ii) fetches similar existing ads to create aneighborhood around the input ad, (iii) and compares the predicted CTRs in theneighborhood to declare whether the input ad is strong or weak. In addition, assuggestions for ad text improvement, TSI shows anonymized versions of superiorads (higher predicted CTR) in the neighborhood. For (i), we propose a BERTbased text-to-CTR model trained on impressions and clicks associated with an adtext. For (ii), we propose a sentence-BERT based semantic-ad-similarity modeltrained using weak labels from ad campaign setup data. Offline experimentsdemonstrate that our BERT based text-to-CTR model achieves a significant liftin CTR prediction AUC for cold start (new) advertisers compared to bag-of-wordsbased baselines. In addition, our semantic-textual-similarity model for similarads retrieval achieves a precision@1 of 0.93 (for retrieving ads from the sameproduct category); this is significantly higher compared to unsupervisedTF-IDF, word2vec, and sentence-BERT baselines. Finally, we share promisingonline results from advertisers in the Yahoo (Verizon Media) ad platform wherea variant of TSI was implemented with sub-second end-to-end latency.

Learning Implicit User Profiles for Personalized Retrieval-Based Chatbot

Comment: Accepted by CIKM 2021,?

Code:?https://github.com/qhjqhj00/CIKM2021-IMPChat

Link:?http://arxiv.org/abs/2108.07935

Abstract

In this paper, we explore the problem of developing personalized chatbots. Apersonalized chatbot is designed as a digital chatting assistant for a user.The key characteristic of a personalized chatbot is that it should have aconsistent personality with the corresponding user. It can talk the same way asthe user when it is delegated to respond to others' messages. We present aretrieval-based personalized chatbot model, namely IMPChat, to learn animplicit user profile from the user's dialogue history. We argue that theimplicit user profile is superior to the explicit user profile regardingaccessibility and flexibility. IMPChat aims to learn an implicit user profilethrough modeling user's personalized language style and personalizedpreferences separately. To learn a user's personalized language style, weelaborately build language models from shallow to deep using the user'shistorical responses; To model a user's personalized preferences, we explorethe conditional relations underneath each post-response pair of the user. Thepersonalized preferences are dynamic and context-aware: we assign higherweights to those historical pairs that are topically related to the currentquery when aggregating the personalized preferences. We match each responsecandidate with the personalized language style and personalized preference,respectively, and fuse the two matching signals to determine the final rankingscore. Comprehensive experiments on two large datasets show that our methodoutperforms all baseline models.

Pixel-Perfect Structure-from-Motion with Featuremetric Refinement

Comment: Accepted to ICCV 2021 for oral presentation

Link:?http://arxiv.org/abs/2108.08291

Abstract

Finding local features that are repeatable across multiple views is acornerstone of sparse 3D reconstruction. The classical image matching paradigmdetects keypoints per-image once and for all, which can yield poorly-localizedfeatures and propagate large errors to the final geometry. In this paper, werefine two key steps of structure-from-motion by a direct alignment oflow-level image information from multiple views: we first adjust the initialkeypoint locations prior to any geometric estimation, and subsequently refinepoints and camera poses as a post-processing. This refinement is robust tolarge detection noise and appearance changes, as it optimizes a featuremetricerror based on dense features predicted by a neural network. This significantlyimproves the accuracy of camera poses and scene geometry for a wide range ofkeypoint detectors, challenging viewing conditions, and off-the-shelf deepfeatures. Our system easily scales to large image collections, enablingpixel-perfect crowd-sourced localization at scale. Our code is publiclyavailable at https://github.com/cvg/pixel-perfect-sfm as an add-on to thepopular SfM software COLMAP.

Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Comment: ICCV 2021 Oral

Link:?http://arxiv.org/abs/2108.08286

Abstract

We propose a deep reparametrization of the maximum a posteriori formulationcommonly employed in multi-frame image restoration tasks. Our approach isderived by introducing a learned error metric and a latent representation ofthe target image, which transforms the MAP objective to a deep feature space.The deep reparametrization allows us to directly model the image formationprocess in the latent space, and to integrate learned image priors into theprediction. Our approach thereby leverages the advantages of deep learning,while also benefiting from the principled multi-frame fusion provided by theclassical MAP formulation. We validate our approach through comprehensiveexperiments on burst denoising and burst super-resolution datasets. Ourapproach sets a new state-of-the-art for both tasks, demonstrating thegenerality and effectiveness of the proposed formulation.

Stochastic Scene-Aware Motion Prediction

Comment: ICCV2021

Link:?http://arxiv.org/abs/2108.08284

Abstract

A long-standing goal in computer vision is to capture, model, andrealistically synthesize human behavior. Specifically, by learning from data,our goal is to enable virtual humans to navigate within cluttered indoor scenesand naturally interact with objects. Such embodied behavior has applications invirtual reality, computer games, and robotics, while synthesized behavior canbe used as a source of training data. This is challenging because real humanmotion is diverse and adapts to the scene. For example, a person can sit or lieon a sofa in many places and with varying styles. It is necessary to model thisdiversity when synthesizing virtual humans that realistically performhuman-scene interactions. We present a novel data-driven, stochastic motionsynthesis method that models different styles of performing a given action witha target object. Our method, called SAMP, for Scene-Aware Motion Prediction,generalizes to target objects of various geometries while enabling thecharacter to navigate in cluttered scenes. To train our method, we collectedMoCap data covering various sitting, lying down, walking, and running styles.We demonstrate our method on complex indoor scenes and achieve superiorperformance compared to existing solutions. Our code and data are available forresearch at https://samp.is.tue.mpg.de.

End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

Comment: ICCV 2021

Link:?http://arxiv.org/abs/2108.08265

Abstract

End-to-end approaches to autonomous driving commonly rely on expertdemonstrations. Although humans are good drivers, they are not good coaches forend-to-end algorithms that demand dense on-policy supervision. On the contrary,automated experts that leverage privileged information can efficiently generatelarge scale on-policy and off-policy demonstrations. However, existingautomated experts for urban driving make heavy use of hand-crafted rules andperform suboptimally even on driving simulators, where ground-truth informationis available. To address these issues, we train a reinforcement learning expertthat maps bird's-eye view images to continuous low-level actions. While settinga new performance upper-bound on CARLA, our expert is also a better coach thatprovides informative supervision signals for imitation learning agents to learnfrom. Supervised by our reinforcement learning coach, a baseline end-to-endagent with monocular camera-input achieves expert-level performance. Ourend-to-end agent achieves a 78% success rate while generalizing to a new townand new weather on the NoCrash-dense benchmark and state-of-the-art performanceon the more challenging CARLA LeaderBoard.

Towards Robust Human Trajectory Prediction in Raw Videos

Comment: 8 pages, 6 figures. Accepted by the 2021 IEEE/RSJ International ?Conference on Intelligent Robots and Systems (IROS 2021)

Link:?http://arxiv.org/abs/2108.08259

Abstract

Human trajectory prediction has received increased attention lately due toits importance in applications such as autonomous vehicles and indoor robots.However, most existing methods make predictions based on human-labeledtrajectories and ignore the errors and noises in detection and tracking. Inthis paper, we study the problem of human trajectory forecasting in raw videos,and show that the prediction accuracy can be severely affected by various typesof tracking errors. Accordingly, we propose a simple yet effective strategy tocorrect the tracking failures by enforcing prediction consistency over time.The proposed "re-tracking" algorithm can be applied to any existing trackingand prediction pipelines. Experiments on public benchmark datasets demonstratethat the proposed method can improve both tracking and prediction performancein challenging real-world scenarios. The code and data are available athttps://git.io/retracking-prediction.

LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector

Comment: ICCV'21

Link:?http://arxiv.org/abs/2108.08258

Abstract

Stereo-based 3D detection aims at detecting 3D object bounding boxes fromstereo images using intermediate depth maps or implicit 3D geometryrepresentations, which provides a low-cost solution for 3D perception. However,its performance is still inferior compared with LiDAR-based detectionalgorithms. To detect and localize accurate 3D bounding boxes, LiDAR-basedmodels can encode accurate object boundaries and surface normal directions fromLiDAR point clouds. However, the detection results of stereo-based detectorsare easily affected by the erroneous depth features due to the limitation ofstereo matching. To solve the problem, we propose LIGA-Stereo (LiDAR GeometryAware Stereo Detector) to learn stereo-based 3D detectors under the guidance ofhigh-level geometry-aware representations of LiDAR-based detection models. Inaddition, we found existing voxel-based stereo detectors failed to learnsemantic features effectively from indirect 3D supervisions. We attach anauxiliary 2D detection head to provide direct 2D semantic supervisions.Experiment results show that the above two strategies improved the geometricand semantic representation capabilities. Compared with the state-of-the-artstereo detector, our method has improved the 3D detection performance of cars,pedestrians, cyclists by 10.44%, 5.69%, 5.97% mAP respectively on the officialKITTI benchmark. The gap between stereo-based and LiDAR-based 3D detectors isfurther narrowed.

LOKI: Long Term and Key Intentions for Trajectory Prediction

Comment: ICCV 2021 (The dataset is available at https://usa.honda-ri.com/loki)

Link:?http://arxiv.org/abs/2108.08236

Abstract

Recent advances in trajectory prediction have shown that explicit reasoningabout agents' intent is important to accurately forecast their motion. However,the current research activities are not directly applicable to intelligent andsafety critical systems. This is mainly because very few public datasets areavailable, and they only consider pedestrian-specific intents for a shorttemporal horizon from a restricted egocentric view. To this end, we proposeLOKI (LOng term and Key Intentions), a novel large-scale dataset that isdesigned to tackle joint trajectory and intention prediction for heterogeneoustraffic agents (pedestrians and vehicles) in an autonomous driving setting. TheLOKI dataset is created to discover several factors that may affect intention,including i) agent's own will, ii) social interactions, iii) environmentalconstraints, and iv) contextual information. We also propose a model thatjointly performs trajectory and intention prediction, showing that recurrentlyreasoning about intention can assist with trajectory prediction. We show ourmethod outperforms state-of-the-art trajectory prediction methods by upto$27\%$ and also provide a baseline for frame-wise intention estimation.

MBRS : Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG Compression

Comment: 9 pages, 6 figures, received by ACM MM'21

Link:?http://arxiv.org/abs/2108.08211

Abstract

Based on the powerful feature extraction ability of deep learningarchitecture, recently, deep-learning based watermarking algorithms have beenwidely studied. The basic framework of such algorithm is the auto-encoder likeend-to-end architecture with an encoder, a noise layer and a decoder. The keyto guarantee robustness is the adversarial training with the differential noiselayer. However, we found that none of the existing framework can well ensurethe robustness against JPEG compression, which is non-differential but is anessential and important image processing operation. To address suchlimitations, we proposed a novel end-to-end training architecture, whichutilizes Mini-Batch of Real and Simulated JPEG compression (MBRS) to enhancethe JPEG robustness. Precisely, for different mini-batches, we randomly chooseone of real JPEG, simulated JPEG and noise-free layer as the noise layer.Besides, we suggest to utilize the Squeeze-and-Excitation blocks which canlearn better feature in embedding and extracting stage, and propose a "messageprocessor" to expand the message in a more appreciate way. Meanwhile, toimprove the robustness against crop attack, we propose an additive diffusionblock into the network. The extensive experimental results have demonstratedthe superior performance of the proposed scheme compared with thestate-of-the-art algorithms. Under the JPEG compression with quality factorQ=50, our models achieve a bit error rate less than 0.01% for extractedmessages, with PSNR larger than 36 for the encoded images, which shows thewell-enhanced robustness against JPEG attack. Besides, under many otherdistortions such as Gaussian filter, crop, cropout and dropout, the proposedframework also obtains strong robustness. The code implemented by PyTorch\cite{2011torch7} is avaiable in https://github.com/jzyustc/MBRS.

Overfitting the Data: Compact Neural Video Delivery via Content-aware Feature Modulation

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.08202

Abstract

Internet video delivery has undergone a tremendous explosion of growth overthe past few years. However, the quality of video delivery system greatlydepends on the Internet bandwidth. Deep Neural Networks (DNNs) are utilized toimprove the quality of video delivery recently. These methods divide a videointo chunks, and stream LR video chunks and corresponding content-aware modelsto the client. The client runs the inference of models to super-resolve the LRchunks. Consequently, a large number of models are streamed in order to delivera video. In this paper, we first carefully study the relation between models ofdifferent chunks, then we tactfully design a joint training framework alongwith the Content-aware Feature Modulation (CaFM) layer to compress these modelsfor neural video delivery. {\bf With our method, each video chunk only requiresless than $1\% $ of original parameters to be streamed, achieving even betterSR performance.} We conduct extensive experiments across various SR backbones,video time length, and scaling factors to demonstrate the advantages of ourmethod. Besides, our method can be also viewed as a new approach of videocoding. Our primary experiments achieve better video quality compared with thecommercial H.264 and H.265 standard under the same storage cost, showing thegreat potential of the proposed method. Code is availableat:\url{https://github.com/Neural-video-delivery/CaFM-Pytorch-ICCV2021}

Masked Face Recognition Challenge: The InsightFace Track Report

Comment: The WebFace260M Track of ICCV-21 MFR Challenge is still open in ?https://github.com/deepinsight/insightface/tree/master/challenges/iccv21-mfr

Link:?http://arxiv.org/abs/2108.08191

Abstract

During the COVID-19 coronavirus epidemic, almost everyone wears a facialmask, which poses a huge challenge to deep face recognition. In this workshop,we organize Masked Face Recognition (MFR) challenge and focus on bench-markingdeep face recognition methods under the existence of facial masks. In the MFRchallenge, there are two main tracks: the InsightFace track and the WebFace260Mtrack. For the InsightFace track, we manually collect a large-scale masked facetest set with 7K identities. In addition, we also collect a children test setincluding 14K identities and a multi-racial test set containing 242Kidentities. By using these three test sets, we build up an online model testingsystem, which can give a comprehensive evaluation of face recognition models.To avoid data privacy problems, no test image is released to the public. As thechallenge is still under-going, we will keep on updating the top-rankedsolutions as well as this report on the arxiv.

ME-PCN: Point Completion Conditioned on Mask Emptiness

Comment: to appear in ICCV 2021

Link:?http://arxiv.org/abs/2108.08187

Abstract

Point completion refers to completing the missing geometries of an objectfrom incomplete observations. Main-stream methods predict the missing shapes bydecoding a global feature learned from the input point cloud, which often leadsto deficient results in preserving topology consistency and surface details. Inthis work, we present ME-PCN, a point completion network that leverages`emptiness' in 3D shape space. Given a single depth scan, previous methodsoften encode the occupied partial shapes while ignoring the empty regions (e.g.holes) in depth maps. In contrast, we argue that these `emptiness' cluesindicate shape boundaries that can be used to improve topology representationand detail granularity on surfaces. Specifically, our ME-PCN encodes both theoccupied point cloud and the neighboring `empty points'. It estimatescoarse-grained but complete and reasonable surface points in the first stage,followed by a refinement stage to produce fine-grained surface details.Comprehensive experiments verify that our ME-PCN presents better qualitativeand quantitative performance against the state-of-the-art. Besides, we furtherprove that our `emptiness' design is lightweight and easy to embed in existingmethods, which shows consistent effectiveness in improving the CD and EMDscores.

Effect of Parameter Optimization on Classical and Learning-based Image Matching Methods

Comment: 8 pages, 2 figures, 3 tables, ICCV 2021 TradiCV Workshop

Link:?http://arxiv.org/abs/2108.08179

Abstract

Deep learning-based image matching methods are improved significantly duringthe recent years. Although these methods are reported to outperform theclassical techniques, the performance of the classical methods is not examinedin detail. In this study, we compare classical and learning-based methods byemploying mutual nearest neighbor search with ratio test and optimizing theratio test threshold to achieve the best performance on two differentperformance metrics. After a fair comparison, the experimental results onHPatches dataset reveal that the performance gap between classical andlearning-based methods is not that significant. Throughout the experiments, wedemonstrated that SuperGlue is the state-of-the-art technique for the imagematching problem on HPatches dataset. However, if a single parameter, namelyratio test threshold, is carefully optimized, a well-known traditional methodSIFT performs quite close to SuperGlue and even outperforms in terms of meanmatching accuracy (MMA) under 1 and 2 pixel thresholds. Moreover, a recentapproach, DFM, which only uses pre-trained VGG features as descriptors andratio test, is shown to outperform most of the well-trained learning-basedmethods. Therefore, we conclude that the parameters of any classical methodshould be analyzed carefully before comparing against a learning-basedtechnique.

Deployment of Deep Neural Networks for Object Detection on Edge AI Devices with Runtime Optimization

Comment: To present in ICCV 2021 (ERCVAD Workshop)

Link:?http://arxiv.org/abs/2108.08166

Abstract

Deep neural networks have proven increasingly important for automotive sceneunderstanding with new algorithms offering constant improvements of thedetection performance. However, there is little emphasis on experiences andneeds for deployment in embedded environments. We therefore perform a casestudy of the deployment of two representative object detection networks on anedge AI platform. In particular, we consider RetinaNet for image-based 2Dobject detection and PointPillars for LiDAR-based 3D object detection. Wedescribe the modifications necessary to convert the algorithms from a PyTorchtraining environment to the deployment environment taking into account theavailable tools. We evaluate the runtime of the deployed DNN using twodifferent libraries, TensorRT and TorchScript. In our experiments, we observeslight advantages of TensorRT for convolutional layers and TorchScript forfully connected layers. We also study the trade-off between runtime andperformance, when selecting an optimized setup for deployment, and observe thatquantization significantly reduces the runtime while having only little impacton the detection performance.

Generalized and Incremental Few-Shot Learning by Explicit Learning and Calibration without Forgetting

Comment: ICCV 2021

Link:?http://arxiv.org/abs/2108.08165

Abstract

Both generalized and incremental few-shot learning have to deal with threemajor challenges: learning novel classes from only few samples per class,preventing catastrophic forgetting of base classes, and classifier calibrationacross novel and base classes. In this work we propose a three-stage frameworkthat allows to explicitly and effectively address these challenges. While thefirst phase learns base classes with many samples, the second phase learns acalibrated classifier for novel classes from few samples while also preventingcatastrophic forgetting. In the final phase, calibration is achieved across allclasses. We evaluate the proposed framework on four challenging benchmarkdatasets for image and video few-shot classification and obtainstate-of-the-art results for both generalized and incremental few shotlearning.

Specificity-preserving RGB-D Saliency Detection

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.08162

Abstract

RGB-D saliency detection has attracted increasing attention, due to itseffectiveness and the fact that depth cues can now be conveniently captured.Existing works often focus on learning a shared representation through variousfusion strategies, with few methods explicitly considering how to preservemodality-specific characteristics. In this paper, taking a new perspective, wepropose a specificity-preserving network (SP-Net) for RGB-D saliency detection,which benefits saliency detection performance by exploring both the sharedinformation and modality-specific properties (e.g., specificity). Specifically,two modality-specific networks and a shared learning network are adopted togenerate individual and shared saliency maps. A cross-enhanced integrationmodule (CIM) is proposed to fuse cross-modal features in the shared learningnetwork, which are then propagated to the next layer for integratingcross-level information. Besides, we propose a multi-modal feature aggregation(MFA) module to integrate the modality-specific features from each individualdecoder into the shared decoder, which can provide rich complementarymulti-modal information to boost the saliency detection performance. Further, askip connection is used to combine hierarchical features between the encoderand decoder layers. Experiments on six benchmark datasets demonstrate that ourSP-Net outperforms other state-of-the-art methods. Code is available at:https://github.com/taozh2017/SPNet.

Single-DARTS: Towards Stable Architecture Search

Comment: Accepted by ICCV 2021 NeurArch Workshp

Link:?http://arxiv.org/abs/2108.08128

Abstract

Differentiable architecture search (DARTS) marks a milestone in NeuralArchitecture Search (NAS), boasting simplicity and small search costs. However,DARTS still suffers from frequent performance collapse, which happens when someoperations, such as skip connections, zeroes and poolings, dominate thearchitecture. In this paper, we are the first to point out that the phenomenonis attributed to bi-level optimization. We propose Single-DARTS which merelyuses single-level optimization, updating network weights and architectureparameters simultaneously with the same data batch. Even single-leveloptimization has been previously attempted, no literature provides a systematicexplanation on this essential point. Replacing the bi-level optimization,Single-DARTS obviously alleviates performance collapse as well as enhances thestability of architecture search. Experiment results show that Single-DARTSachieves state-of-the-art performance on mainstream search spaces. Forinstance, on NAS-Benchmark-201, the searched architectures are nearly optimalones. We also validate that the single-level optimization framework is muchmore stable than the bi-level one. We hope that this simple yet effectivemethod will give some insights on differential architecture search. The code isavailable at https://github.com/PencilAndBike/Single-DARTS.git.

Target Adaptive Context Aggregation for Video Scene Graph Generation

Comment: ICCV 2021 camera-ready version

Link:?http://arxiv.org/abs/2108.08121

Abstract

This paper deals with a challenging task of video scene graph generation(VidSGG), which could serve as a structured video representation for high-levelunderstanding tasks. We present a new {\em detect-to-track} paradigm for thistask by decoupling the context modeling for relation prediction from thecomplicated low-level entity tracking. Specifically, we design an efficientmethod for frame-level VidSGG, termed as {\em Target Adaptive ContextAggregation Network} (TRACE), with a focus on capturing spatio-temporal contextinformation for relation recognition. Our TRACE framework streamlines theVidSGG pipeline with a modular design, and presents two unique blocks ofHierarchical Relation Tree (HRTree) construction and Target-adaptive ContextAggregation. More specific, our HRTree first provides an adpative structure fororganizing possible relation candidates efficiently, and guides contextaggregation module to effectively capture spatio-temporal structureinformation. Then, we obtain a contextualized feature representation for eachrelation candidate and build a classification head to recognize its relationcategory. Finally, we provide a simple temporal association strategy to trackTRACE detected results to yield the video-level VidSGG. We perform experimentson two VidSGG benchmarks: ImageNet-VidVRD and Action Genome, and the resultsdemonstrate that our TRACE achieves the state-of-the-art performance. The codeand models are made available at \url{https://github.com/MCG-NJU/TRACE}.

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.08119

Abstract

Learning RAW-to-sRGB mapping has drawn increasing attention in recent years,wherein an input raw image is trained to imitate the target sRGB image capturedby another camera. However, the severe color inconsistency makes it verychallenging to generate well-aligned training pairs of input raw and targetsRGB images. While learning with inaccurately aligned supervision is prone tocausing pixel shift and producing blurry results. In this paper, we circumventsuch issue by presenting a joint learning model for image alignment andRAW-to-sRGB mapping. To diminish the effect of color inconsistency in imagealignment, we introduce to use a global color mapping (GCM) module to generatean initial sRGB image given the input raw image, which can keep the spatiallocation of the pixels unchanged, and the target sRGB image is utilized toguide GCM for converting the color towards it. Then a pre-trained optical flowestimation network (e.g., PWC-Net) is deployed to warp the target sRGB image toalign with the GCM output. To alleviate the effect of inaccurately alignedsupervision, the warped target sRGB image is leveraged to learn RAW-to-sRGBmapping. When training is done, the GCM module and optical flow network can bedetached, thereby bringing no extra computation cost for inference. Experimentsshow that our method performs favorably against state-of-the-arts on ZRR andSR-RAW datasets. With our joint learning model, a light-weight backbone canachieve better quantitative and qualitative performance on ZRR dataset. Codesare available at https://github.com/cszhilu1998/RAW-to-sRGB.

Few-Shot Batch Incremental Road Object Detection via Detector Fusion

Comment: accepted in 2nd Autonomous Vehicle Vision Workshop, ICCV2021

Link:?http://arxiv.org/abs/2108.08048

Abstract

Incremental few-shot learning has emerged as a new and challenging area indeep learning, whose objective is to train deep learning models using very fewsamples of new class data, and none of the old class data. In this work wetackle the problem of batch incremental few-shot road object detection usingdata from the India Driving Dataset (IDD). Our approach, DualFusion, combinesobject detectors in a manner that allows us to learn to detect rare objectswith very limited data, all without severely degrading the performance of thedetector on the abundant classes. In the IDD OpenSet incremental few-shotdetection task, we achieve a mAP50 score of 40.0 on the base classes and anoverall mAP50 score of 38.8, both of which are the highest to date. In the COCObatch incremental few-shot detection task, we achieve a novel AP score of 9.9,surpassing the state-of-the-art novel class performance on the same by over 6.6times.

Adaptive Graph Convolution for Point Cloud Analysis

Comment: Camera-ready, to be published in ICCV 2021

Link:?http://arxiv.org/abs/2108.08035

Abstract

Convolution on 3D point clouds that generalized from 2D grid-like domains iswidely researched yet far from perfect. The standard convolution characterisesfeature correspondences indistinguishably among 3D points, presenting anintrinsic limitation of poor distinctive feature learning. In this paper, wepropose Adaptive Graph Convolution (AdaptConv) which generates adaptive kernelsfor points according to their dynamically learned features. Compared with usinga fixed/isotropic kernel, AdaptConv improves the flexibility of point cloudconvolutions, effectively and precisely capturing the diverse relations betweenpoints from different semantic parts. Unlike popular attentional weightschemes, the proposed AdaptConv implements the adaptiveness inside theconvolution operation instead of simply assigning different weights to theneighboring points. Extensive qualitative and quantitative evaluations showthat our method outperforms state-of-the-art point cloud classification andsegmentation approaches on several benchmark datasets. Our code is available athttps://github.com/hrzhou2/AdaptConv-master.

Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting

Comment: ICCV 2021

Link:?http://arxiv.org/abs/2108.08023

Abstract

In crowd counting, due to the problem of laborious labelling, it is perceivedintractability of collecting a new large-scale dataset which has plentifulimages with large diversity in density, scene, etc. Thus, for learning ageneral model, training with data from multiple different datasets might be aremedy and be of great value. In this paper, we resort to the multi-domainjoint learning and propose a simple but effective Domain-specific KnowledgePropagating Network (DKPNet)1 for unbiasedly learning the knowledge frommultiple diverse data domains at the same time. It is mainly achieved byproposing the novel Variational Attention(VA) technique for explicitly modelingthe attention distributions for different domains. And as an extension to VA,Intrinsic Variational Attention(InVA) is proposed to handle the problems ofover-lapped domains and sub-domains. Extensive experiments have been conductedto validate the superiority of our DKPNet over several popular datasets,including ShanghaiTech A/B, UCF-QNRF and NWPU.

Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.08020

Abstract

Co-speech gesture generation is to synthesize a gesture sequence that notonly looks real but also matches with the input speech audio. Our methodgenerates the movements of a complete upper body, including arms, hands, andthe head. Although recent data-driven methods achieve great success, challengesstill exist, such as limited variety, poor fidelity, and lack of objectivemetrics. Motivated by the fact that the speech cannot fully determine thegesture, we design a method that learns a set of gesture template vectors tomodel the latent conditions, which relieve the ambiguity. For our method, thetemplate vector determines the general appearance of a generated gesturesequence, while the speech audio drives subtle movements of the body, bothindispensable for synthesizing a realistic gesture sequence. Due to theintractability of an objective metric for gesture-speech synchronization, weadopt the lip-sync error as a proxy metric to tune and evaluate thesynchronization ability of our model. Extensive experiments show thesuperiority of our method in both objective and subjective evaluations onfidelity and synchronization.

RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving

Comment: To Appear in ICCV2021.?

Code:?https://github.com/ruocwang

Link:?http://arxiv.org/abs/2108.08019

Abstract

Predictor-based algorithms have achieved remarkable performance in the NeuralArchitecture Search (NAS) tasks. However, these methods suffer from highcomputation costs, as training the performance predictor usually requirestraining and evaluating hundreds of architectures from scratch. Previous worksalong this line mainly focus on reducing the number of architectures requiredto fit the predictor. In this work, we tackle this challenge from a differentperspective - improve search efficiency by cutting down the computation budgetof architecture training. We propose NOn-uniform Successive Halving (NOSH), ahierarchical scheduling algorithm that terminates the training ofunderperforming architectures early to avoid wasting budget. To effectivelyleverage the non-uniform supervision signals produced by NOSH, we formulatepredictor-based architecture search as learning to rank with pairwisecomparisons. The resulting method - RANK-NOSH, reduces the search budget by ~5xwhile achieving competitive or even better performance than previousstate-of-the-art predictor-based methods on various spaces and datasets.

Deep Hybrid Self-Prior for Full 3D Mesh Generation

Comment: Accepted by ICCV2021

Link:?http://arxiv.org/abs/2108.08017

Abstract

We present a deep learning pipeline that leverages network self-prior torecover a full 3D model consisting of both a triangular mesh and a texture mapfrom the colored 3D point cloud. Different from previous methods eitherexploiting 2D self-prior for image editing or 3D self-prior for pure surfacereconstruction, we propose to exploit a novel hybrid 2D-3D self-prior in deepneural networks to significantly improve the geometry quality and produce ahigh-resolution texture map, which is typically missing from the output ofcommodity-level 3D scanners. In particular, we first generate an initial meshusing a 3D convolutional neural network with 3D self-prior, and then encodeboth 3D information and color information in the 2D UV atlas, which is furtherrefined by 2D convolutional neural networks with the self-prior. In this way,both 2D and 3D self-priors are utilized for the mesh and texture recovery.Experiments show that, without the need of any additional training data, ourmethod recovers the 3D textured mesh model of high quality from sparse input,and outperforms the state-of-the-art methods in terms of both the geometry andtexture quality.

Multi-Anchor Active Domain Adaptation for Semantic Segmentation

Comment: ICCV 2021 Oral

Link:?http://arxiv.org/abs/2108.08012

Abstract

Unsupervised domain adaption has proven to be an effective approach foralleviating the intensive workload of manual annotation by aligning thesynthetic source-domain data and the real-world target-domain samples.Unfortunately, mapping the target-domain distribution to the source-domainunconditionally may distort the essential structural information of thetarget-domain data. To this end, we firstly propose to introduce a novelmulti-anchor based active learning strategy to assist domain adaptationregarding the semantic segmentation task. By innovatively adopting multipleanchors instead of a single centroid, the source domain can be bettercharacterized as a multimodal distribution, thus more representative andcomplimentary samples are selected from the target domain. With little workloadto manually annotate these active samples, the distortion of the target-domaindistribution can be effectively alleviated, resulting in a large performancegain. The multi-anchor strategy is additionally employed to model thetarget-distribution. By regularizing the latent representation of the targetsamples compact around multiple anchors through a novel soft alignment loss,more precise segmentation can be achieved. Extensive experiments are conductedon public datasets to demonstrate that the proposed approach outperformsstate-of-the-art methods significantly, along with thorough ablation study toverify the effectiveness of each component.

Structured Outdoor Architecture Reconstruction by Exploration and Classification

Comment: 2021 International Conference on Computer Vision (ICCV 2021)

Link:?http://arxiv.org/abs/2108.07990

Abstract

This paper presents an explore-and-classify framework for structuredarchitectural reconstruction from an aerial image. Starting from a potentiallyimperfect building reconstruction by an existing algorithm, our approach 1)explores the space of building models by modifying the reconstruction viaheuristic actions; 2) learns to classify the correctness of building modelswhile generating classification labels based on the ground-truth, and 3)repeat. At test time, we iterate exploration and classification, seeking for aresult with the best classification score. We evaluate the approach usinginitial reconstructions by two baselines and two state-of-the-artreconstruction algorithms. Qualitative and quantitative evaluations demonstratethat our approach consistently improves the reconstruction quality from everyinitial reconstruction.

A New Journey from SDRTV to HDRTV

Comment: Accepted to ICCV

Link:?http://arxiv.org/abs/2108.07978

Abstract

Nowadays modern displays are capable to render video content with highdynamic range (HDR) and wide color gamut (WCG). However, most availableresources are still in standard dynamic range (SDR). Therefore, there is anurgent demand to transform existing SDR-TV contents into their HDR-TV versions.In this paper, we conduct an analysis of SDRTV-to-HDRTV task by modeling theformation of SDRTV/HDRTV content. Base on the analysis, we propose a three-stepsolution pipeline including adaptive global color mapping, local enhancementand highlight generation. Moreover, the above analysis inspires us to present alightweight network that utilizes global statistics as guidance to conductimage-adaptive color mapping. In addition, we construct a dataset using HDRvideos in HDR10 standard, named HDRTV1K, and select five metrics to evaluatethe results of SDRTV-to-HDRTV algorithms. Furthermore, our final resultsachieve state-of-the-art performance in quantitative comparisons and visualquality. The code and dataset are available athttps://github.com/chxy95/HDRTVNet.

Thermal Image Processing via Physics-Inspired Deep Networks

Comment: Accepted to 2nd ICCV workshop on Learning for Computational Imaging ?(LCI)

Link:?http://arxiv.org/abs/2108.07973

Abstract

We introduce DeepIR, a new thermal image processing framework that combinesphysically accurate sensor modeling with deep network-based imagerepresentation. Our key enabling observations are that the images captured bythermal sensors can be factored into slowly changing, scene-independent sensornon-uniformities (that can be accurately modeled using physics) and ascene-specific radiance flux (that is well-represented using a deepnetwork-based regularizer). DeepIR requires neither training data nor periodicground-truth calibration with a known black body target--making it well suitedfor practical computer vision tasks. We demonstrate the power of going DeepIRby developing new denoising and super-resolution algorithms that exploitmultiple images of the scene captured with camera jitter. Simulated and realdata experiments demonstrate that DeepIR can perform high-qualitynon-uniformity correction with as few as three images, achieving a 10dB PSNRimprovement over competing approaches.

SynFace: Face Recognition with Synthetic Data

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.07960

Abstract

With the recent success of deep neural networks, remarkable progress has beenachieved on face recognition. However, collecting large-scale real-worldtraining data for face recognition has turned out to be challenging, especiallydue to the label noise and privacy issues. Meanwhile, existing face recognitiondatasets are usually collected from web images, lacking detailed annotations onattributes (e.g., pose and expression), so the influences of differentattributes on face recognition have been poorly investigated. In this paper, weaddress the above-mentioned issues in face recognition using synthetic faceimages, i.e., SynFace. Specifically, we first explore the performance gapbetween recent state-of-the-art face recognition models trained with syntheticand real face images. We then analyze the underlying causes behind theperformance gap, e.g., the poor intra-class variations and the domain gapbetween synthetic and real face images. Inspired by this, we devise the SynFacewith identity mixup (IM) and domain mixup (DM) to mitigate the aboveperformance gap, demonstrating the great potentials of synthetic data for facerecognition. Furthermore, with the controllable face synthesis model, we caneasily manage different factors of synthetic face generation, including pose,expression, illumination, the number of identities, and samples per identity.Therefore, we also perform a systematically empirical analysis on syntheticface images to provide some insights on how to effectively utilize syntheticdata for face recognition.

Self-Supervised Visual Representations Learning by Contrastive Mask Prediction

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.07954

Abstract

Advanced self-supervised visual representation learning methods rely on theinstance discrimination (ID) pretext task. We point out that the ID task has animplicit semantic consistency (SC) assumption, which may not hold inunconstrained datasets. In this paper, we propose a novel contrastive maskprediction (CMP) task for visual representation learning and design a maskcontrast (MaskCo) framework to implement the idea. MaskCo contrastsregion-level features instead of view-level features, which makes it possibleto identify the positive sample without any assumptions. To solve the domaingap between masked and unmasked features, we design a dedicated mask predictionhead in MaskCo. This module is shown to be the key to the success of the CMP.We evaluated MaskCo on training datasets beyond ImageNet and compare itsperformance with MoCo V2. Results show that MaskCo achieves comparableperformance with MoCo V2 using ImageNet training dataset, but demonstrates astronger performance across a range of downstream tasks when COCO or ConceptualCaptions are used for training. MaskCo provides a promising alternative to theID-based methods for self-supervised learning in the wild.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning

Comment: 10 pages, 9 figures. Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.07938

Abstract

In this paper, we propose a talking face generation method that takes anaudio signal as input and a short target video clip as reference, andsynthesizes a photo-realistic video of the target face with natural lipmotions, head poses, and eye blinks that are in-sync with the input audiosignal. We note that the synthetic face attributes include not only explicitones such as lip motions that have high correlations with speech, but alsoimplicit ones such as head poses and eye blinks that have only weak correlationwith the input audio. To model such complicated relationships among differentface attributes with input audio, we propose a FACe Implicit Attribute LearningGenerative Adversarial Network (FACIAL-GAN), which integrates thephonetics-aware, context-aware, and identity-aware information to synthesizethe 3D face animation with realistic motions of lips, head poses, and eyeblinks. Then, our Rendering-to-Video network takes the rendered face images andthe attention map of eye blinks as input to generate the photo-realistic outputvideo frames. Experimental results and user studies show our method cangenerate realistic talking face videos with not only synchronized lip motions,but also natural head movements and eye blinks, with better qualities than theresults of state-of-the-art methods.

Towards Interpreting Zoonotic Potential of Betacoronavirus Sequences With Attention

Comment: 11 pages, 8 figures, 1 table, accepted at ICLR 2021 workshop Machine ?learning for preventing and combating pandemics

Link:?http://arxiv.org/abs/2108.08077

Abstract

Current methods for viral discovery target evolutionarily conserved proteinsthat accurately identify virus families but remain unable to distinguish thezoonotic potential of newly discovered viruses. Here, we apply anattention-enhanced long-short-term memory (LSTM) deep neural net classifier toa highly conserved viral protein target to predict zoonotic potential acrossbetacoronaviruses. The classifier performs with a 94% accuracy. Analysis andvisualization of attention at the sequence and structure-level featuresindicate possible association between important protein-protein interactionsgoverning viral replication in zoonotic betacoronaviruses and zoonotictransmission.

XAI Methods for Neural Time Series Classification: A Brief Review

Comment: 8 pages, 0 figures, Accepted as a poster presentation

Link:?http://arxiv.org/abs/2108.08009

Abstract

Deep learning models have recently demonstrated remarkable results in avariety of tasks, which is why they are being increasingly applied inhigh-stake domains, such as industry, medicine, and finance. Considering thatautomatic predictions in these domains might have a substantial impact on thewell-being of a person, as well as considerable financial and legalconsequences to an individual or a company, all actions and decisions thatresult from applying these models have to be accountable. Given that asubstantial amount of data that is collected in high-stake domains are in theform of time series, in this paper we examine the current state of eXplainableAI (XAI) methods with a focus on approaches for opening up deep learning blackboxes for the task of time series classification. Finally, our contributionalso aims at deriving promising directions for future work, to advance XAI fordeep learning on time series data.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | 35篇顶会论文:ICCV/ CIKM/ ACM MM的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

牲交欧美兽交欧美 | 国产色xx群视频射精 | 无人区乱码一区二区三区 | 亚洲精品久久久久avwww潮水 | 午夜精品久久久久久久久 | 在线观看欧美一区二区三区 | 水蜜桃色314在线观看 | 天堂亚洲2017在线观看 | 无码av最新清无码专区吞精 | 色婷婷av一区二区三区之红樱桃 | 成人性做爰aaa片免费看不忠 | 色综合天天综合狠狠爱 | 成熟妇人a片免费看网站 | 亚洲s码欧洲m码国产av | 亚洲精品中文字幕乱码 | 色老头在线一区二区三区 | 国产精品无码久久av | 国产人妖乱国产精品人妖 | 亚洲精品一区二区三区婷婷月 | 日本一区二区更新不卡 | 波多野结衣乳巨码无在线观看 | 全球成人中文在线 | 国产av无码专区亚洲a∨毛片 | 国内综合精品午夜久久资源 | 日韩欧美成人免费观看 | 精品久久综合1区2区3区激情 | 免费无码av一区二区 | 在线成人www免费观看视频 | av无码不卡在线观看免费 | av无码久久久久不卡免费网站 | 国产午夜亚洲精品不卡下载 | 无码成人精品区在线观看 | 在线观看国产午夜福利片 | 久久精品人妻少妇一区二区三区 | 少妇激情av一区二区 | 国产va免费精品观看 | 精品午夜福利在线观看 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 九月婷婷人人澡人人添人人爽 | 日韩精品一区二区av在线 | 极品嫩模高潮叫床 | 少妇一晚三次一区二区三区 | 亚洲人亚洲人成电影网站色 | 四虎国产精品一区二区 | 久久zyz资源站无码中文动漫 | 天下第一社区视频www日本 | 成年女人永久免费看片 | 亚洲国精产品一二二线 | 领导边摸边吃奶边做爽在线观看 | 亚洲欧洲中文日韩av乱码 | 少妇无码一区二区二三区 | 亚洲成熟女人毛毛耸耸多 | 无码av免费一区二区三区试看 | 久久精品国产99精品亚洲 | 日韩在线不卡免费视频一区 | 久久久精品成人免费观看 | 国内精品久久毛片一区二区 | 女人被爽到呻吟gif动态图视看 | 欧美日韩人成综合在线播放 | 久久精品国产亚洲精品 | 久久久精品欧美一区二区免费 | 乱中年女人伦av三区 | 玩弄人妻少妇500系列视频 | 99国产欧美久久久精品 | 国产精品对白交换视频 | 国产精品无码一区二区桃花视频 | 伦伦影院午夜理论片 | 黑人玩弄人妻中文在线 | 精品人妻av区 | 国产内射老熟女aaaa | 国产精品丝袜黑色高跟鞋 | 亚洲啪av永久无码精品放毛片 | 日韩亚洲欧美精品综合 | 色诱久久久久综合网ywww | 美女毛片一区二区三区四区 | 樱花草在线播放免费中文 | 亚洲熟悉妇女xxx妇女av | 国产av久久久久精东av | 丰满少妇女裸体bbw | 日本xxxx色视频在线观看免费 | 成 人影片 免费观看 | 性欧美牲交在线视频 | 久久无码中文字幕免费影院蜜桃 | 白嫩日本少妇做爰 | 呦交小u女精品视频 | 人人妻人人澡人人爽欧美精品 | 性欧美牲交xxxxx视频 | 岛国片人妻三上悠亚 | 亚洲精品一区二区三区在线观看 | 男女作爱免费网站 | 人妻有码中文字幕在线 | www国产精品内射老师 | 性史性农村dvd毛片 | 夜精品a片一区二区三区无码白浆 | 亚洲国产精品久久久天堂 | 呦交小u女精品视频 | 久久久久久国产精品无码下载 | 午夜男女很黄的视频 | 国产午夜精品一区二区三区嫩草 | 久久亚洲精品成人无码 | 午夜性刺激在线视频免费 | 欧美第一黄网免费网站 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲男人av天堂午夜在 | 免费视频欧美无人区码 | 中文字幕人妻无码一夲道 | 国产精品毛多多水多 | 无套内射视频囯产 | 无码国模国产在线观看 | 最新版天堂资源中文官网 | 国产精品久久久午夜夜伦鲁鲁 | 女高中生第一次破苞av | 国产97色在线 | 免 | 樱花草在线播放免费中文 | 亚洲小说春色综合另类 | av无码久久久久不卡免费网站 | 人人澡人人透人人爽 | 国产做国产爱免费视频 | 亚洲精品欧美二区三区中文字幕 | 久久国产精品萌白酱免费 | 亚洲精品中文字幕 | a在线亚洲男人的天堂 | 人妻中文无码久热丝袜 | 图片小说视频一区二区 | 国产suv精品一区二区五 | 白嫩日本少妇做爰 | 精品国产av色一区二区深夜久久 | 青春草在线视频免费观看 | 亚洲成a人片在线观看无码3d | 国产亚洲日韩欧美另类第八页 | 3d动漫精品啪啪一区二区中 | 一区二区三区乱码在线 | 欧洲 | 日本精品少妇一区二区三区 | 亚洲精品一区二区三区在线 | 丰满少妇女裸体bbw | 一本久道高清无码视频 | 女人被男人爽到呻吟的视频 | 欧美一区二区三区视频在线观看 | 装睡被陌生人摸出水好爽 | 欧美午夜特黄aaaaaa片 | 国产在线精品一区二区三区直播 | 亚洲自偷精品视频自拍 | 无码国内精品人妻少妇 | 精品国产精品久久一区免费式 | 撕开奶罩揉吮奶头视频 | 久久久中文字幕日本无吗 | 精品欧洲av无码一区二区三区 | 久久久精品人妻久久影视 | 国产猛烈高潮尖叫视频免费 | 黑人巨大精品欧美黑寡妇 | 人人妻人人澡人人爽欧美精品 | 国产成人精品三级麻豆 | 久久精品中文闷骚内射 | 西西人体www44rt大胆高清 | 动漫av一区二区在线观看 | 99久久精品无码一区二区毛片 | 男女作爱免费网站 | 国产偷自视频区视频 | 无码精品国产va在线观看dvd | 国产性生大片免费观看性 | 成人影院yy111111在线观看 | 成人欧美一区二区三区黑人免费 | www国产亚洲精品久久网站 | 熟妇激情内射com | 亚洲日韩av片在线观看 | 漂亮人妻洗澡被公强 日日躁 | 国产精品.xx视频.xxtv | 亚洲成在人网站无码天堂 | 国产精品欧美成人 | 国产超级va在线观看视频 | 99riav国产精品视频 | 人妻少妇精品久久 | 国产精品亚洲а∨无码播放麻豆 | 国产成人无码午夜视频在线观看 | 国产高清av在线播放 | a国产一区二区免费入口 | 国产成人精品无码播放 | 久久精品国产99精品亚洲 | 国产又粗又硬又大爽黄老大爷视 | 欧美性生交活xxxxxdddd | 国产精品亚洲五月天高清 | 少妇性l交大片欧洲热妇乱xxx | 国产莉萝无码av在线播放 | 无码国内精品人妻少妇 | 国产无av码在线观看 | 亚洲日本va午夜在线电影 | 国产激情艳情在线看视频 | 日韩av无码一区二区三区不卡 | 99精品无人区乱码1区2区3区 | 中文字幕人妻丝袜二区 | 国产麻豆精品精东影业av网站 | 在线a亚洲视频播放在线观看 | 亚洲天堂2017无码中文 | 中文字幕av伊人av无码av | 国产亚洲精品精品国产亚洲综合 | 中文字幕无线码免费人妻 | 中文字幕无码视频专区 | 无码人妻精品一区二区三区不卡 | 亚洲欧美国产精品专区久久 | 国产麻豆精品精东影业av网站 | 天海翼激烈高潮到腰振不止 | 无码人妻少妇伦在线电影 | 午夜时刻免费入口 | 国产 精品 自在自线 | 亚洲 另类 在线 欧美 制服 | 精品国产一区二区三区四区在线看 | 欧美人与动性行为视频 | 扒开双腿疯狂进出爽爽爽视频 | 在线播放免费人成毛片乱码 | 人人澡人人透人人爽 | 亚洲国产高清在线观看视频 | 无码任你躁久久久久久久 | 人妻与老人中文字幕 | 蜜臀av无码人妻精品 | 亚洲日本在线电影 | 最近中文2019字幕第二页 | 永久黄网站色视频免费直播 | 国产舌乚八伦偷品w中 | 美女极度色诱视频国产 | 97人妻精品一区二区三区 | 亚洲高清偷拍一区二区三区 | 鲁大师影院在线观看 | a片在线免费观看 | 国产人妻久久精品二区三区老狼 | 乱人伦人妻中文字幕无码久久网 | 欧美黑人性暴力猛交喷水 | 蜜桃av抽搐高潮一区二区 | 日韩少妇内射免费播放 | 乌克兰少妇xxxx做受 | 国精品人妻无码一区二区三区蜜柚 | 精品成人av一区二区三区 | 国产精品自产拍在线观看 | 成人三级无码视频在线观看 | 国内精品一区二区三区不卡 | 无码人妻精品一区二区三区下载 | 亚洲无人区午夜福利码高清完整版 | 亚洲人成网站色7799 | 十八禁视频网站在线观看 | 国产热a欧美热a在线视频 | 综合网日日天干夜夜久久 | 久久成人a毛片免费观看网站 | 亚洲va中文字幕无码久久不卡 | 午夜精品久久久内射近拍高清 | 国产精品99爱免费视频 | 性欧美牲交xxxxx视频 | 国产成人av免费观看 | 久久精品国产99久久6动漫 | 青草视频在线播放 | 狠狠躁日日躁夜夜躁2020 | 在线亚洲高清揄拍自拍一品区 | 亚洲综合在线一区二区三区 | 日本熟妇乱子伦xxxx | 久久精品丝袜高跟鞋 | 亚洲综合另类小说色区 | 2020最新国产自产精品 | 99精品国产综合久久久久五月天 | 精品无人国产偷自产在线 | 少妇人妻大乳在线视频 | 久久久国产精品无码免费专区 | 国产成人无码av片在线观看不卡 | 成 人 网 站国产免费观看 | 国产成人一区二区三区在线观看 | 大色综合色综合网站 | 荫蒂被男人添的好舒服爽免费视频 | 日韩亚洲欧美精品综合 | 亚洲熟女一区二区三区 | 性欧美大战久久久久久久 | 精品国产一区av天美传媒 | 少妇被黑人到高潮喷出白浆 | 国产在线一区二区三区四区五区 | 四虎4hu永久免费 | 人妻天天爽夜夜爽一区二区 | 日本护士毛茸茸高潮 | 国产精品.xx视频.xxtv | 日本高清一区免费中文视频 | 国产乡下妇女做爰 | 日韩精品乱码av一区二区 | 精品少妇爆乳无码av无码专区 | 国产亚洲精品久久久ai换 | 亚洲国产欧美在线成人 | 麻豆精品国产精华精华液好用吗 | 无码一区二区三区在线观看 | 色婷婷香蕉在线一区二区 | 久久精品成人欧美大片 | 亚洲自偷自拍另类第1页 | 亚洲精品一区二区三区在线 | 亚洲精品无码人妻无码 | 亚洲中文字幕成人无码 | 久久午夜无码鲁丝片午夜精品 | 中文字幕无码av波多野吉衣 | 色情久久久av熟女人妻网站 | 久久亚洲精品成人无码 | 亚洲人成人无码网www国产 | 久精品国产欧美亚洲色aⅴ大片 | 色一情一乱一伦 | 亚洲精品一区国产 | 国产精品爱久久久久久久 | 在线观看欧美一区二区三区 | 波多野结衣av在线观看 | 成人免费视频视频在线观看 免费 | 欧美激情一区二区三区成人 | 牲欲强的熟妇农村老妇女 | 日本肉体xxxx裸交 | 久久久久99精品成人片 | 俺去俺来也在线www色官网 | 国产特级毛片aaaaaa高潮流水 | 中文亚洲成a人片在线观看 | 少妇激情av一区二区 | 亚洲の无码国产の无码影院 | 免费观看激色视频网站 | 成人无码视频免费播放 | 日韩亚洲欧美精品综合 | √天堂中文官网8在线 | 在线播放免费人成毛片乱码 | 性啪啪chinese东北女人 | 亚洲 日韩 欧美 成人 在线观看 | 成人影院yy111111在线观看 | 99久久久国产精品无码免费 | 青春草在线视频免费观看 | 国产精品久久久久无码av色戒 | 国产凸凹视频一区二区 | 熟女少妇在线视频播放 | 激情内射亚州一区二区三区爱妻 | 在线看片无码永久免费视频 | 国产内射爽爽大片视频社区在线 | 亚洲欧洲日本综合aⅴ在线 | 成人试看120秒体验区 | 色综合久久中文娱乐网 | 国产av无码专区亚洲awww | 又大又硬又爽免费视频 | 水蜜桃av无码 | 无码一区二区三区在线 | 天堂一区人妻无码 | 中文字幕无码人妻少妇免费 | 一本色道久久综合狠狠躁 | 国语精品一区二区三区 | 好爽又高潮了毛片免费下载 | 88国产精品欧美一区二区三区 | 久久午夜无码鲁丝片 | 中文字幕乱码亚洲无线三区 | 爽爽影院免费观看 | 国产精品对白交换视频 | 国产做国产爱免费视频 | 国产免费久久精品国产传媒 | 无码国产乱人伦偷精品视频 | 美女扒开屁股让男人桶 | 国内少妇偷人精品视频 | 熟妇人妻无乱码中文字幕 | 亚洲欧美国产精品久久 | 永久免费精品精品永久-夜色 | 国产三级久久久精品麻豆三级 | 国产成人一区二区三区在线观看 | 在线观看国产午夜福利片 | 亚洲精品一区二区三区在线观看 | 女人高潮内射99精品 | 亚洲精品国产品国语在线观看 | 亚洲一区二区三区香蕉 | 综合人妻久久一区二区精品 | 免费网站看v片在线18禁无码 | 国产精品-区区久久久狼 | 成年美女黄网站色大免费视频 | 樱花草在线社区www | av无码不卡在线观看免费 | 最新国产麻豆aⅴ精品无码 | 色欲av亚洲一区无码少妇 | 亚洲成av人综合在线观看 | 久久99精品国产麻豆 | 爱做久久久久久 | 国产明星裸体无码xxxx视频 | 亚洲日韩av片在线观看 | 久久综合激激的五月天 | 亚洲无人区午夜福利码高清完整版 | 中文字幕无码免费久久9一区9 | 亚洲娇小与黑人巨大交 | 偷窥村妇洗澡毛毛多 | 人人妻人人澡人人爽人人精品 | 18禁黄网站男男禁片免费观看 | 日韩精品乱码av一区二区 | 精品成在人线av无码免费看 | 午夜无码人妻av大片色欲 | aⅴ亚洲 日韩 色 图网站 播放 | 天堂在线观看www | 一本大道伊人av久久综合 | 国产精品毛多多水多 | 久在线观看福利视频 | 精品国产成人一区二区三区 | 中文精品无码中文字幕无码专区 | 国产人妻人伦精品1国产丝袜 | 亚洲精品国偷拍自产在线观看蜜桃 | 日日碰狠狠躁久久躁蜜桃 | 精品无码国产自产拍在线观看蜜 | 妺妺窝人体色www婷婷 | 在线欧美精品一区二区三区 | 亚洲成av人片在线观看无码不卡 | 精品aⅴ一区二区三区 | 国产激情无码一区二区 | 精品夜夜澡人妻无码av蜜桃 | 亚洲中文字幕久久无码 | 久热国产vs视频在线观看 | 无码播放一区二区三区 | 国产内射爽爽大片视频社区在线 | 国产亚洲欧美在线专区 | 色诱久久久久综合网ywww | 99久久人妻精品免费二区 | 真人与拘做受免费视频 | 无码人妻出轨黑人中文字幕 | 亚洲七七久久桃花影院 | 欧美熟妇另类久久久久久多毛 | www国产亚洲精品久久网站 | 国产精品亚洲а∨无码播放麻豆 | 亚洲中文无码av永久不收费 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产精品无码一区二区三区不卡 | 亚洲精品午夜国产va久久成人 | 国产乡下妇女做爰 | 蜜桃视频韩日免费播放 | 精品国产国产综合精品 | 日本熟妇大屁股人妻 | 人人妻人人澡人人爽欧美一区九九 | 又湿又紧又大又爽a视频国产 | 日本一区二区更新不卡 | 少妇无码av无码专区在线观看 | 老头边吃奶边弄进去呻吟 | 久久久久久久人妻无码中文字幕爆 | 国产欧美亚洲精品a | 人人澡人人透人人爽 | 久久久久成人片免费观看蜜芽 | 少妇人妻大乳在线视频 | 亚洲国产精品毛片av不卡在线 | 亚洲成av人片在线观看无码不卡 | 又大又紧又粉嫩18p少妇 | 色狠狠av一区二区三区 | 国产高清不卡无码视频 | 国产香蕉尹人综合在线观看 | 亚洲国产欧美国产综合一区 | 九月婷婷人人澡人人添人人爽 | 亚洲一区二区三区播放 | 亚洲成a人片在线观看无码 | 国产成人综合在线女婷五月99播放 | 东北女人啪啪对白 | 国产成人一区二区三区在线观看 | 亚洲日韩中文字幕在线播放 | 精品欧洲av无码一区二区三区 | 男人扒开女人内裤强吻桶进去 | 日本高清一区免费中文视频 | 日日碰狠狠躁久久躁蜜桃 | 18精品久久久无码午夜福利 | 欧洲vodafone精品性 | 亚洲午夜久久久影院 | 国产成人无码区免费内射一片色欲 | 少妇无码吹潮 | 欧美高清在线精品一区 | 亚洲日韩一区二区三区 | 在线天堂新版最新版在线8 | 午夜熟女插插xx免费视频 | 亚洲阿v天堂在线 | 国产熟妇另类久久久久 | 国产精华av午夜在线观看 | 国产在线精品一区二区三区直播 | 久久综合狠狠综合久久综合88 | 999久久久国产精品消防器材 | 精品熟女少妇av免费观看 | 精品无码一区二区三区爱欲 | 久久精品国产99精品亚洲 | 亚洲va欧美va天堂v国产综合 | 色综合久久88色综合天天 | 日本精品人妻无码免费大全 | 丰满人妻一区二区三区免费视频 | 麻豆果冻传媒2021精品传媒一区下载 | 人妻夜夜爽天天爽三区 | 亚洲自偷自拍另类第1页 | 秋霞成人午夜鲁丝一区二区三区 | 国产精品亚洲一区二区三区喷水 | 少妇人妻偷人精品无码视频 | 国产香蕉尹人视频在线 | 2020久久超碰国产精品最新 | 又湿又紧又大又爽a视频国产 | a片免费视频在线观看 | 97久久超碰中文字幕 | 国产乡下妇女做爰 | 欧美人妻一区二区三区 | 男女猛烈xx00免费视频试看 | 自拍偷自拍亚洲精品被多人伦好爽 | 亚洲国产综合无码一区 | 无套内射视频囯产 | 久久aⅴ免费观看 | 亚洲精品午夜国产va久久成人 | 欧美刺激性大交 | 中文字幕无码av波多野吉衣 | 亚洲日韩精品欧美一区二区 | 久9re热视频这里只有精品 | 国内精品久久久久久中文字幕 | 男女超爽视频免费播放 | 扒开双腿疯狂进出爽爽爽视频 | 国产激情精品一区二区三区 | 亚洲国产精品一区二区美利坚 | 天天躁夜夜躁狠狠是什么心态 | 亚洲小说图区综合在线 | 久久精品中文字幕一区 | 色综合久久中文娱乐网 | 丰满人妻精品国产99aⅴ | 麻花豆传媒剧国产免费mv在线 | 激情内射亚州一区二区三区爱妻 | 国产真实伦对白全集 | 欧美日韩视频无码一区二区三 | 人人妻人人澡人人爽欧美一区 | 四十如虎的丰满熟妇啪啪 | 精品无码国产自产拍在线观看蜜 | 双乳奶水饱满少妇呻吟 | 亚洲色在线无码国产精品不卡 | 亚洲综合在线一区二区三区 | 人妻人人添人妻人人爱 | 精品 日韩 国产 欧美 视频 | 大肉大捧一进一出好爽视频 | 无码国产乱人伦偷精品视频 | 国产小呦泬泬99精品 | 久久国产精品二国产精品 | 日韩av无码一区二区三区 | 97精品国产97久久久久久免费 | 色综合久久中文娱乐网 | 国产成人无码一二三区视频 | 综合激情五月综合激情五月激情1 | 亚洲の无码国产の无码影院 | 超碰97人人做人人爱少妇 | 婷婷色婷婷开心五月四房播播 | 特大黑人娇小亚洲女 | 天堂а√在线中文在线 | 色婷婷av一区二区三区之红樱桃 | 撕开奶罩揉吮奶头视频 | www一区二区www免费 | 国内丰满熟女出轨videos | 亚洲无人区午夜福利码高清完整版 | 亚洲区小说区激情区图片区 | 无码乱肉视频免费大全合集 | 精品无人国产偷自产在线 | 极品嫩模高潮叫床 | 精品国产麻豆免费人成网站 | 久久精品丝袜高跟鞋 | 欧美野外疯狂做受xxxx高潮 | 18精品久久久无码午夜福利 | 少妇人妻av毛片在线看 | 99久久亚洲精品无码毛片 | 1000部啪啪未满十八勿入下载 | 377p欧洲日本亚洲大胆 | 国产无遮挡又黄又爽免费视频 | www国产亚洲精品久久网站 | 无码福利日韩神码福利片 | 国产va免费精品观看 | 久久婷婷五月综合色国产香蕉 | 无码国产激情在线观看 | 色婷婷欧美在线播放内射 | 国内精品一区二区三区不卡 | 免费网站看v片在线18禁无码 | 国产亚洲tv在线观看 | 人人澡人人妻人人爽人人蜜桃 | 国产成人综合色在线观看网站 | 久久久国产一区二区三区 | 在线播放无码字幕亚洲 | 亚洲 a v无 码免 费 成 人 a v | 久久久精品国产sm最大网站 | 国产精品久久久久久久影院 | 亚洲日本一区二区三区在线 | 中文字幕无码av激情不卡 | 夜夜高潮次次欢爽av女 | 中文字幕精品av一区二区五区 | 99麻豆久久久国产精品免费 | 丝袜足控一区二区三区 | 中文精品无码中文字幕无码专区 | 日韩人妻少妇一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 亚洲码国产精品高潮在线 | 日韩精品无码一本二本三本色 | 国产区女主播在线观看 | 76少妇精品导航 | 欧美乱妇无乱码大黄a片 | 无码福利日韩神码福利片 | 东北女人啪啪对白 | 成人一在线视频日韩国产 | 亚洲区欧美区综合区自拍区 | 狠狠色欧美亚洲狠狠色www | 乱人伦人妻中文字幕无码久久网 | 国产9 9在线 | 中文 | 午夜精品一区二区三区在线观看 | 亚洲日韩精品欧美一区二区 | 牛和人交xxxx欧美 | av小次郎收藏 | 欧美黑人乱大交 | 亚洲 a v无 码免 费 成 人 a v | 日韩精品乱码av一区二区 | 精品人人妻人人澡人人爽人人 | 中文字幕av日韩精品一区二区 | 国产亚洲欧美日韩亚洲中文色 | 亚洲国产精品久久人人爱 | 日本乱偷人妻中文字幕 | 性色欲情网站iwww九文堂 | 成人无码精品1区2区3区免费看 | 98国产精品综合一区二区三区 | 欧美国产日韩亚洲中文 | 中文字幕av日韩精品一区二区 | 男女性色大片免费网站 | 中文字幕乱码中文乱码51精品 | 大肉大捧一进一出视频出来呀 | 丰满人妻一区二区三区免费视频 | 国产网红无码精品视频 | 亚洲精品一区二区三区四区五区 | 妺妺窝人体色www婷婷 | 成人免费无码大片a毛片 | www一区二区www免费 | 国产人成高清在线视频99最全资源 | 欧美35页视频在线观看 | 久久熟妇人妻午夜寂寞影院 | 性欧美大战久久久久久久 | 国产无遮挡又黄又爽又色 | 色婷婷综合激情综在线播放 | 亚洲国产欧美日韩精品一区二区三区 | 国产人妻大战黑人第1集 | 亚洲国产欧美日韩精品一区二区三区 | 国产尤物精品视频 | 毛片内射-百度 | 国产精品人人妻人人爽 | 亚洲精品成人av在线 | 天堂久久天堂av色综合 | 黑人粗大猛烈进出高潮视频 | 国产真实夫妇视频 | 性欧美大战久久久久久久 | 在线看片无码永久免费视频 | 丰满人妻精品国产99aⅴ | 帮老师解开蕾丝奶罩吸乳网站 | 四虎影视成人永久免费观看视频 | 少妇无码av无码专区在线观看 | 欧美性生交活xxxxxdddd | 99精品无人区乱码1区2区3区 | www国产亚洲精品久久久日本 | 成年美女黄网站色大免费全看 | 国产香蕉尹人综合在线观看 | 国产电影无码午夜在线播放 | 搡女人真爽免费视频大全 | 无人区乱码一区二区三区 | 无码人妻精品一区二区三区不卡 | 99er热精品视频 | 免费观看的无遮挡av | 亚洲小说图区综合在线 | 丰满少妇女裸体bbw | 国产猛烈高潮尖叫视频免费 | 国产九九九九九九九a片 | 国产超级va在线观看视频 | 噜噜噜亚洲色成人网站 | 99久久亚洲精品无码毛片 | 久久久精品欧美一区二区免费 | 亚洲综合无码一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | 日本肉体xxxx裸交 | 国产亚洲视频中文字幕97精品 | 最新国产乱人伦偷精品免费网站 | 久久国内精品自在自线 | 中文字幕乱妇无码av在线 | 欧美精品国产综合久久 | 男女性色大片免费网站 | 亚洲人成网站免费播放 | 国内老熟妇对白xxxxhd | 久久zyz资源站无码中文动漫 | 99久久久无码国产aaa精品 | 亚洲精品综合五月久久小说 | 亚洲s码欧洲m码国产av | 一本色道久久综合狠狠躁 | 国产精品久久久久久久影院 | 国产另类ts人妖一区二区 | 男女爱爱好爽视频免费看 | 欧美三级不卡在线观看 | 无套内谢的新婚少妇国语播放 | 中文字幕日产无线码一区 | 波多野结衣高清一区二区三区 | 日日鲁鲁鲁夜夜爽爽狠狠 | 精品久久久久香蕉网 | 国内精品九九久久久精品 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 国产手机在线αⅴ片无码观看 | 永久免费精品精品永久-夜色 | 国产精品自产拍在线观看 | 亚洲无人区午夜福利码高清完整版 | 精品无码国产自产拍在线观看蜜 | 国产亚洲精品久久久久久 | 无码国内精品人妻少妇 | 男女猛烈xx00免费视频试看 | 成人无码视频免费播放 | 午夜时刻免费入口 | 久久国语露脸国产精品电影 | 鲁大师影院在线观看 | 蜜桃视频插满18在线观看 | 午夜精品久久久内射近拍高清 | 欧美亚洲国产一区二区三区 | 国产在线精品一区二区三区直播 | 国产另类ts人妖一区二区 | 亚洲综合在线一区二区三区 | 综合激情五月综合激情五月激情1 | 精品水蜜桃久久久久久久 | 日韩少妇内射免费播放 | 强伦人妻一区二区三区视频18 | 成人免费视频视频在线观看 免费 | 亚洲精品一区二区三区婷婷月 | 草草网站影院白丝内射 | 强伦人妻一区二区三区视频18 | 成人性做爰aaa片免费看 | a在线观看免费网站大全 | 国产黄在线观看免费观看不卡 | 亚洲熟女一区二区三区 | 精品偷自拍另类在线观看 | 成人欧美一区二区三区黑人免费 | 日日摸日日碰夜夜爽av | 又粗又大又硬又长又爽 | 亚洲乱码中文字幕在线 | 漂亮人妻洗澡被公强 日日躁 | 在线播放亚洲第一字幕 | 十八禁真人啪啪免费网站 | 成人无码精品1区2区3区免费看 | 丰满肥臀大屁股熟妇激情视频 | 国产情侣作爱视频免费观看 | 国产精品美女久久久 | 成在人线av无码免观看麻豆 | 亚洲毛片av日韩av无码 | 亚洲精品欧美二区三区中文字幕 | 国产精品亚洲а∨无码播放麻豆 | 日韩精品成人一区二区三区 | 久久精品人人做人人综合 | 性生交大片免费看女人按摩摩 | 午夜福利电影 | 国产特级毛片aaaaaaa高清 | 久久亚洲中文字幕精品一区 | 嫩b人妻精品一区二区三区 | 欧美人与牲动交xxxx | 狠狠色噜噜狠狠狠狠7777米奇 | 久久午夜夜伦鲁鲁片无码免费 | 国产精品美女久久久网av | 久久久久久亚洲精品a片成人 | 漂亮人妻洗澡被公强 日日躁 | 亚洲の无码国产の无码影院 | 捆绑白丝粉色jk震动捧喷白浆 | 国产又粗又硬又大爽黄老大爷视 | 久久久www成人免费毛片 | 性史性农村dvd毛片 | 中文字幕无码av激情不卡 | 3d动漫精品啪啪一区二区中 | 午夜精品久久久久久久 | 国产99久久精品一区二区 | 国产亚av手机在线观看 | 久青草影院在线观看国产 | 精品国产乱码久久久久乱码 | 久久国内精品自在自线 | 日本爽爽爽爽爽爽在线观看免 | 免费观看的无遮挡av | 麻豆果冻传媒2021精品传媒一区下载 | 日韩人妻无码一区二区三区久久99 | 欧洲精品码一区二区三区免费看 | 国产免费观看黄av片 | 人妻天天爽夜夜爽一区二区 | 人人妻人人澡人人爽欧美一区 | av香港经典三级级 在线 | 国产亚洲精品久久久久久国模美 | 久久久久亚洲精品中文字幕 | 国产激情无码一区二区app | 人妻少妇精品视频专区 | 午夜无码人妻av大片色欲 | 亚洲狠狠婷婷综合久久 | 男人的天堂av网站 | 亚洲色无码一区二区三区 | 一区二区三区乱码在线 | 欧洲 | 撕开奶罩揉吮奶头视频 | 亚洲爆乳精品无码一区二区三区 | 色老头在线一区二区三区 | 日日夜夜撸啊撸 | 久久精品国产亚洲精品 | 亚洲中文字幕av在天堂 | 在线成人www免费观看视频 | 国产精品美女久久久网av | 天天av天天av天天透 | 大胆欧美熟妇xx | 丝袜人妻一区二区三区 | 又紧又大又爽精品一区二区 | 亚洲中文字幕乱码av波多ji | 亚洲精品一区国产 | 日韩欧美中文字幕公布 | 精品无码一区二区三区的天堂 | 免费乱码人妻系列无码专区 | 国产乱人无码伦av在线a | 亚洲日本一区二区三区在线 | 一本无码人妻在中文字幕免费 | 日韩视频 中文字幕 视频一区 | 台湾无码一区二区 | 性欧美熟妇videofreesex | 国产乱人伦av在线无码 | 亚洲国产精品一区二区第一页 | 青青青爽视频在线观看 | 内射欧美老妇wbb | www国产精品内射老师 | 免费视频欧美无人区码 | 人妻少妇精品久久 | 97久久国产亚洲精品超碰热 | 欧洲欧美人成视频在线 | 久久这里只有精品视频9 | a在线观看免费网站大全 | 亚洲性无码av中文字幕 | av在线亚洲欧洲日产一区二区 | 中文字幕无码热在线视频 | 国内精品久久毛片一区二区 | 久久久精品人妻久久影视 | 色妞www精品免费视频 | 亚洲国产综合无码一区 | 亚洲国产欧美国产综合一区 | 俺去俺来也在线www色官网 | 中文字幕中文有码在线 | 国产免费无码一区二区视频 | 精品国产一区二区三区四区在线看 | 理论片87福利理论电影 | 无码人妻少妇伦在线电影 | 成人无码视频免费播放 | 国产精品美女久久久久av爽李琼 | 国内精品人妻无码久久久影院蜜桃 | √8天堂资源地址中文在线 | 国产免费无码一区二区视频 | 无码成人精品区在线观看 | 日本一本二本三区免费 | 国产无遮挡又黄又爽免费视频 | 无码成人精品区在线观看 | 水蜜桃av无码 | 成人无码精品1区2区3区免费看 | 老熟妇仑乱视频一区二区 | 精品国偷自产在线视频 | 嫩b人妻精品一区二区三区 | 久久zyz资源站无码中文动漫 | 人妻少妇精品无码专区动漫 | 无码毛片视频一区二区本码 | 欧美性猛交内射兽交老熟妇 | 中文字幕日产无线码一区 | 少妇愉情理伦片bd | 欧洲精品码一区二区三区免费看 | 亚洲国产精品久久久久久 | 熟妇人妻激情偷爽文 | 亚洲色偷偷偷综合网 | 国产麻豆精品精东影业av网站 | 国产精品美女久久久 | 日韩亚洲欧美精品综合 | a片在线免费观看 | 久久99国产综合精品 | 久激情内射婷内射蜜桃人妖 | 国产成人精品视频ⅴa片软件竹菊 | 国产人成高清在线视频99最全资源 | 国产亚洲tv在线观看 | 国产在线无码精品电影网 | 亚洲一区二区三区偷拍女厕 | 亚洲天堂2017无码中文 | 午夜无码区在线观看 | 少妇性俱乐部纵欲狂欢电影 | 欧美一区二区三区视频在线观看 | 欧美国产日韩亚洲中文 | 亚洲日韩乱码中文无码蜜桃臀网站 | 无码国模国产在线观看 | 丰满人妻一区二区三区免费视频 | 国产亚洲精品精品国产亚洲综合 | 东京无码熟妇人妻av在线网址 | 欧美一区二区三区视频在线观看 | 人妻天天爽夜夜爽一区二区 | 人妻熟女一区 | 久久精品国产亚洲精品 | 天天躁日日躁狠狠躁免费麻豆 | 国产精品爱久久久久久久 | 亚洲综合伊人久久大杳蕉 | 人人妻人人澡人人爽欧美一区九九 | 日韩亚洲欧美精品综合 | 国产成人无码av在线影院 | 东京热无码av男人的天堂 | 久久综合给合久久狠狠狠97色 | 亚洲の无码国产の无码步美 | 久久精品人妻少妇一区二区三区 | 国产精品丝袜黑色高跟鞋 | 国产亚洲欧美日韩亚洲中文色 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 精品偷拍一区二区三区在线看 | 日韩av无码一区二区三区不卡 | 亚洲欧美日韩成人高清在线一区 | 在线亚洲高清揄拍自拍一品区 | 久久人人爽人人爽人人片ⅴ | 欧美人与禽猛交狂配 | 在线а√天堂中文官网 | 亚洲の无码国产の无码步美 | 国产精品美女久久久网av | 久久精品成人欧美大片 | 18禁黄网站男男禁片免费观看 | 国产偷自视频区视频 | 精品国产aⅴ无码一区二区 | 国产精品内射视频免费 | 国产麻豆精品一区二区三区v视界 | 无码精品国产va在线观看dvd | 中文字幕 人妻熟女 | 精品少妇爆乳无码av无码专区 | 午夜精品一区二区三区在线观看 | 亚洲精品一区二区三区四区五区 | 国内老熟妇对白xxxxhd | 午夜男女很黄的视频 | 亚洲欧洲日本无在线码 | 300部国产真实乱 | 久久久www成人免费毛片 | 亚洲精品一区三区三区在线观看 | 国产极品视觉盛宴 | 久久精品国产一区二区三区肥胖 | 午夜免费福利小电影 | 人妻aⅴ无码一区二区三区 | 特黄特色大片免费播放器图片 | 少妇性俱乐部纵欲狂欢电影 | 最近中文2019字幕第二页 | 中文字幕 亚洲精品 第1页 | 亚洲色欲色欲天天天www | 中文字幕 亚洲精品 第1页 | 日韩无套无码精品 | www国产亚洲精品久久久日本 | 激情人妻另类人妻伦 | 亚洲中文字幕成人无码 | 亚洲日本在线电影 | 日韩少妇内射免费播放 | 久在线观看福利视频 | 国产激情精品一区二区三区 | 精品成在人线av无码免费看 | 精品久久久无码中文字幕 | 亚洲精品国偷拍自产在线麻豆 | 国产精品久久久av久久久 | 久久精品国产一区二区三区 | 少妇人妻av毛片在线看 | 两性色午夜免费视频 | 少妇无码av无码专区在线观看 | 久久精品99久久香蕉国产色戒 | 成人免费视频在线观看 | 欧美人与动性行为视频 | 国产精品亚洲а∨无码播放麻豆 | 日韩av无码中文无码电影 | 欧美猛少妇色xxxxx | 国产真人无遮挡作爱免费视频 | 亚洲欧洲中文日韩av乱码 | 国产亚洲精品久久久久久国模美 | 日本精品高清一区二区 | 亚洲成a人片在线观看无码3d | 性史性农村dvd毛片 | 婷婷五月综合激情中文字幕 | 少妇无码av无码专区在线观看 | 伊人久久大香线焦av综合影院 | 国产精品久久久久无码av色戒 | 国产精品成人av在线观看 | 国产熟妇高潮叫床视频播放 | 中文字幕无码免费久久9一区9 | 成人无码视频在线观看网站 | 国产成人无码一二三区视频 | 一本久道久久综合婷婷五月 | 色诱久久久久综合网ywww | 一本色道久久综合亚洲精品不卡 | 国产熟女一区二区三区四区五区 | 老熟妇乱子伦牲交视频 | 强奷人妻日本中文字幕 | 55夜色66夜色国产精品视频 | 97夜夜澡人人爽人人喊中国片 | 中文字幕人成乱码熟女app | 精品国产成人一区二区三区 | 青青久在线视频免费观看 | 成人亚洲精品久久久久软件 | 永久黄网站色视频免费直播 | 亚洲成熟女人毛毛耸耸多 | 久久久久成人精品免费播放动漫 | 中文字幕无码日韩欧毛 | 中文字幕无码免费久久9一区9 | 欧洲极品少妇 | 精品aⅴ一区二区三区 | 国内少妇偷人精品视频免费 | 久久精品丝袜高跟鞋 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲色在线无码国产精品不卡 | 色情久久久av熟女人妻网站 | 久久熟妇人妻午夜寂寞影院 | 67194成是人免费无码 | 波多野结衣aⅴ在线 | 人妻少妇精品无码专区二区 | 牲交欧美兽交欧美 | 麻豆国产丝袜白领秘书在线观看 | 欧美熟妇另类久久久久久多毛 | 中国女人内谢69xxxx | 亚洲aⅴ无码成人网站国产app | 久久精品成人欧美大片 | 国产九九九九九九九a片 | 日日摸日日碰夜夜爽av | 久久天天躁狠狠躁夜夜免费观看 | 131美女爱做视频 | 精品国产一区av天美传媒 | 国产一区二区三区四区五区加勒比 | 国精产品一区二区三区 | 成人精品天堂一区二区三区 | 亚洲の无码国产の无码步美 | 国产精品久久久午夜夜伦鲁鲁 | 国产成人精品一区二区在线小狼 | 99国产精品白浆在线观看免费 | 国产精品亚洲专区无码不卡 | 熟妇人妻无乱码中文字幕 | 国产精品无码久久av | 久久久久99精品成人片 | 久9re热视频这里只有精品 | 亚欧洲精品在线视频免费观看 | 青春草在线视频免费观看 | 天海翼激烈高潮到腰振不止 | ass日本丰满熟妇pics | 亚洲中文字幕无码中文字在线 | 欧美日本免费一区二区三区 | 中文字幕乱码亚洲无线三区 | 免费看男女做好爽好硬视频 | 少妇厨房愉情理9仑片视频 | 成年美女黄网站色大免费全看 | 动漫av网站免费观看 | 国产人妻精品一区二区三区不卡 | 久久精品视频在线看15 | 亚洲 激情 小说 另类 欧美 | 亚洲国产高清在线观看视频 | 激情亚洲一区国产精品 | 香蕉久久久久久av成人 | 国产亚洲精品久久久久久大师 | 精品国产青草久久久久福利 | 欧美激情一区二区三区成人 | 九九在线中文字幕无码 | 少妇无码av无码专区在线观看 | 成人欧美一区二区三区 | 无码人妻精品一区二区三区下载 | 久久午夜夜伦鲁鲁片无码免费 | 日本xxxx色视频在线观看免费 | 日日天日日夜日日摸 | 国产亚洲精品久久久久久大师 | 奇米影视888欧美在线观看 | 香港三级日本三级妇三级 | 欧美三级不卡在线观看 | 中文字幕日韩精品一区二区三区 | 国产乱码精品一品二品 | 色婷婷欧美在线播放内射 | 亚洲熟妇色xxxxx欧美老妇y | 亚洲理论电影在线观看 | 好爽又高潮了毛片免费下载 | 一本久道久久综合婷婷五月 | 久久精品人人做人人综合试看 | 好爽又高潮了毛片免费下载 | 亚洲日韩精品欧美一区二区 | 亚洲精品鲁一鲁一区二区三区 | 大屁股大乳丰满人妻 | 亚洲啪av永久无码精品放毛片 | 久久精品一区二区三区四区 | 99久久精品日本一区二区免费 | 亚洲自偷自拍另类第1页 | 欧美日韩亚洲国产精品 | 在线精品亚洲一区二区 | 四十如虎的丰满熟妇啪啪 | 中文字幕av无码一区二区三区电影 | 久久国产精品精品国产色婷婷 | 久久久久国色av免费观看性色 | 国产做国产爱免费视频 | 欧美xxxx黑人又粗又长 | 99久久久国产精品无码免费 | 欧美精品一区二区精品久久 | 亚洲一区二区三区在线观看网站 | 久久精品中文字幕一区 | 欧美成人免费全部网站 | 色爱情人网站 | 亚洲精品中文字幕久久久久 | 国内揄拍国内精品人妻 | 久久99精品久久久久久动态图 | aa片在线观看视频在线播放 | 日本一卡2卡3卡四卡精品网站 | 人人澡人人妻人人爽人人蜜桃 | 亚洲综合无码一区二区三区 | 国产熟女一区二区三区四区五区 | av无码电影一区二区三区 | 一本久道久久综合婷婷五月 | 婷婷五月综合缴情在线视频 | 日韩精品成人一区二区三区 | 欧美 日韩 亚洲 在线 | 国产一区二区三区精品视频 | 亚洲小说春色综合另类 | 久久熟妇人妻午夜寂寞影院 | 色综合天天综合狠狠爱 | 黑人巨大精品欧美一区二区 | 亚洲s码欧洲m码国产av | 女人被男人爽到呻吟的视频 | 国产精品99久久精品爆乳 | 国产电影无码午夜在线播放 | 国产综合色产在线精品 | 亚洲精品国偷拍自产在线麻豆 | √天堂资源地址中文在线 | 久久久久久久久蜜桃 | 中文字幕乱码人妻无码久久 | 香蕉久久久久久av成人 | 亚洲gv猛男gv无码男同 | 亚洲国产成人a精品不卡在线 | 成人性做爰aaa片免费看不忠 | 成人亚洲精品久久久久 | 欧美人与善在线com | 国产超碰人人爽人人做人人添 | 草草网站影院白丝内射 | 亚洲人成网站色7799 | 人人澡人摸人人添 | 奇米影视7777久久精品人人爽 | 天天爽夜夜爽夜夜爽 | 国产成人无码区免费内射一片色欲 | 国产热a欧美热a在线视频 | 久久精品国产大片免费观看 | 精品国产青草久久久久福利 | 婷婷色婷婷开心五月四房播播 | 亚洲人成影院在线观看 | 在线精品国产一区二区三区 | 久久五月精品中文字幕 | 国产精品久久久久久久影院 | 又大又紧又粉嫩18p少妇 | 亚洲七七久久桃花影院 | 亚洲精品美女久久久久久久 | 乱中年女人伦av三区 | 激情人妻另类人妻伦 | 精品亚洲韩国一区二区三区 | 精品国产麻豆免费人成网站 | 成人片黄网站色大片免费观看 | 中文字幕无线码免费人妻 | 久久国产精品萌白酱免费 | 鲁鲁鲁爽爽爽在线视频观看 | 香港三级日本三级妇三级 | 福利一区二区三区视频在线观看 | 国产成人精品久久亚洲高清不卡 | 久热国产vs视频在线观看 | 无码人妻av免费一区二区三区 | 日韩亚洲欧美中文高清在线 | 国产综合在线观看 | 中国大陆精品视频xxxx | 人妻插b视频一区二区三区 | 成人无码精品1区2区3区免费看 | 亚洲精品国产精品乱码视色 | 熟妇人妻激情偷爽文 | 国产亚洲精品久久久闺蜜 | 又紧又大又爽精品一区二区 | 国产亚洲视频中文字幕97精品 | 久久aⅴ免费观看 | 国内丰满熟女出轨videos | 东京一本一道一二三区 | 色妞www精品免费视频 | 国产特级毛片aaaaaa高潮流水 | 九九久久精品国产免费看小说 | 午夜精品一区二区三区的区别 | 性欧美疯狂xxxxbbbb | 欧美性猛交内射兽交老熟妇 | 国产精品毛多多水多 | 亚洲色无码一区二区三区 | 特黄特色大片免费播放器图片 | 在线视频网站www色 | 丰满岳乱妇在线观看中字无码 | 娇妻被黑人粗大高潮白浆 | 性色av无码免费一区二区三区 | 偷窥村妇洗澡毛毛多 | 久久精品成人欧美大片 | 7777奇米四色成人眼影 | 国产精品二区一区二区aⅴ污介绍 | 亚洲精品中文字幕久久久久 | 欧美精品免费观看二区 | 亚洲成熟女人毛毛耸耸多 | 欧洲美熟女乱又伦 | 久久人人爽人人爽人人片av高清 | 狠狠噜狠狠狠狠丁香五月 | 国产精品永久免费视频 | а√资源新版在线天堂 | 天天拍夜夜添久久精品大 | 无码乱肉视频免费大全合集 | аⅴ资源天堂资源库在线 | 精品无码一区二区三区爱欲 | 欧美精品一区二区精品久久 | 奇米影视7777久久精品人人爽 | 婷婷综合久久中文字幕蜜桃三电影 | 色欲久久久天天天综合网精品 | 亚洲色偷偷偷综合网 | 成在人线av无码免观看麻豆 | 亚洲精品成a人在线观看 | 西西人体www44rt大胆高清 | 捆绑白丝粉色jk震动捧喷白浆 | 免费无码av一区二区 | 国产熟女一区二区三区四区五区 | 久久人人爽人人爽人人片av高清 | 牲欲强的熟妇农村老妇女 | 麻豆人妻少妇精品无码专区 | 99久久婷婷国产综合精品青草免费 | 97夜夜澡人人爽人人喊中国片 | 一本久道久久综合婷婷五月 | 中文精品久久久久人妻不卡 | 亚洲一区av无码专区在线观看 | 丰满人妻翻云覆雨呻吟视频 | 青青青爽视频在线观看 | 精品乱码久久久久久久 | 亚洲自偷自拍另类第1页 | a片免费视频在线观看 | 日本va欧美va欧美va精品 | 国产熟妇另类久久久久 | 免费男性肉肉影院 | 红桃av一区二区三区在线无码av | 十八禁视频网站在线观看 | 久久人人爽人人人人片 | 妺妺窝人体色www在线小说 | 亚洲精品国产精品乱码视色 | 色老头在线一区二区三区 | 丰满少妇熟乱xxxxx视频 | 久久久久av无码免费网 | 99国产精品白浆在线观看免费 | 亚洲精品久久久久avwww潮水 | 女人被爽到呻吟gif动态图视看 | 天天综合网天天综合色 | 牲交欧美兽交欧美 | 精品国产一区二区三区四区在线看 | 亚洲中文字幕乱码av波多ji | 午夜熟女插插xx免费视频 | 综合激情五月综合激情五月激情1 | 亚洲熟女一区二区三区 | 天天做天天爱天天爽综合网 | 内射爽无广熟女亚洲 | av无码电影一区二区三区 | 丰满少妇女裸体bbw | 妺妺窝人体色www在线小说 | 久精品国产欧美亚洲色aⅴ大片 | 日本一卡二卡不卡视频查询 | 美女张开腿让人桶 | 东京热无码av男人的天堂 | 熟妇女人妻丰满少妇中文字幕 | 美女极度色诱视频国产 | 亚洲综合精品香蕉久久网 | 熟女俱乐部五十路六十路av | 午夜熟女插插xx免费视频 | 欧美日本日韩 | 麻豆国产人妻欲求不满谁演的 | 亚洲啪av永久无码精品放毛片 | 天堂а√在线中文在线 | 亚洲国产精品久久久久久 | 精品日本一区二区三区在线观看 | 欧美黑人性暴力猛交喷水 | 国产精品沙发午睡系列 | 女人高潮内射99精品 | 少妇被粗大的猛进出69影院 | 国产午夜视频在线观看 | 亚洲欧美国产精品专区久久 | 欧美性生交xxxxx久久久 | 国产精品国产三级国产专播 | 国产麻豆精品精东影业av网站 | 全黄性性激高免费视频 | 久久久久久国产精品无码下载 | 亚洲成a人一区二区三区 | 天天摸天天碰天天添 | 亚洲啪av永久无码精品放毛片 | 国产内射爽爽大片视频社区在线 | 国内精品人妻无码久久久影院蜜桃 | 无码av岛国片在线播放 | 国产人妻精品一区二区三区不卡 | 国产精品无码永久免费888 | 国产69精品久久久久app下载 | 日本又色又爽又黄的a片18禁 | 免费人成网站视频在线观看 | 麻豆国产人妻欲求不满 | 99久久99久久免费精品蜜桃 | 超碰97人人做人人爱少妇 | 国产sm调教视频在线观看 | 99久久精品国产一区二区蜜芽 | 性欧美疯狂xxxxbbbb | 18禁黄网站男男禁片免费观看 | 欧美黑人性暴力猛交喷水 | 一本久久伊人热热精品中文字幕 | 国产国语老龄妇女a片 | 成人性做爰aaa片免费看不忠 | 在线精品亚洲一区二区 | 欧美日韩视频无码一区二区三 | 内射后入在线观看一区 | 亚洲精品成a人在线观看 | 国产精品久免费的黄网站 | 国产99久久精品一区二区 | 欧美一区二区三区 | 97夜夜澡人人爽人人喊中国片 | 婷婷色婷婷开心五月四房播播 | 无码一区二区三区在线 | 国产热a欧美热a在线视频 | 久久精品女人的天堂av | 国内精品久久久久久中文字幕 | 欧美成人午夜精品久久久 | 亚洲精品鲁一鲁一区二区三区 | 亚洲欧洲日本无在线码 | 日韩欧美中文字幕公布 | 无套内谢老熟女 | 小鲜肉自慰网站xnxx | 玩弄少妇高潮ⅹxxxyw | 无码中文字幕色专区 | 国内老熟妇对白xxxxhd | 午夜不卡av免费 一本久久a久久精品vr综合 | 亚洲国产一区二区三区在线观看 | 国产成人无码av一区二区 | 丰满少妇高潮惨叫视频 | 丰满肥臀大屁股熟妇激情视频 | 又湿又紧又大又爽a视频国产 | 亚洲国产高清在线观看视频 | 久久熟妇人妻午夜寂寞影院 | 国产无套内射久久久国产 | 亚洲精品鲁一鲁一区二区三区 | 未满小14洗澡无码视频网站 | 欧美变态另类xxxx | 国产做国产爱免费视频 | 中文字幕无线码免费人妻 | 精品水蜜桃久久久久久久 | 精品乱子伦一区二区三区 | 亚洲中文字幕无码一久久区 | 中文字幕无码乱人伦 | 欧美大屁股xxxxhd黑色 | 久久久久久久人妻无码中文字幕爆 | 日韩精品一区二区av在线 | 国产无遮挡又黄又爽免费视频 | 国产美女精品一区二区三区 | 日产精品高潮呻吟av久久 | av在线亚洲欧洲日产一区二区 | 中文字幕乱码中文乱码51精品 | 国产97人人超碰caoprom | 国产精品无码永久免费888 | 午夜精品一区二区三区在线观看 | 亚洲国产精华液网站w | 免费无码肉片在线观看 | 自拍偷自拍亚洲精品被多人伦好爽 | 网友自拍区视频精品 | 国产亚洲美女精品久久久2020 | 亚洲色欲久久久综合网东京热 | www国产亚洲精品久久久日本 | 澳门永久av免费网站 | 亚洲综合无码一区二区三区 | 捆绑白丝粉色jk震动捧喷白浆 | 少妇太爽了在线观看 | 久久精品中文闷骚内射 | 亚洲 另类 在线 欧美 制服 | 国产乱码精品一品二品 | 国内少妇偷人精品视频免费 | 麻豆国产人妻欲求不满 | 永久黄网站色视频免费直播 | 午夜精品久久久内射近拍高清 | 精品国偷自产在线 | 亚洲国产欧美国产综合一区 | 丰满人妻一区二区三区免费视频 | 伊人久久大香线蕉亚洲 | 国产猛烈高潮尖叫视频免费 | 综合网日日天干夜夜久久 | 日本精品少妇一区二区三区 | 国产精品igao视频网 | 免费人成网站视频在线观看 | 曰本女人与公拘交酡免费视频 | 亚洲色偷偷男人的天堂 | 国产深夜福利视频在线 | 国内精品久久久久久中文字幕 | 国内揄拍国内精品少妇国语 | 成熟人妻av无码专区 | 国产精品.xx视频.xxtv | 人妻与老人中文字幕 | 无码中文字幕色专区 | aa片在线观看视频在线播放 | 亚洲区小说区激情区图片区 | 色综合久久久无码网中文 | 久久五月精品中文字幕 | 精品无码国产自产拍在线观看蜜 | 又紧又大又爽精品一区二区 | 国产精品怡红院永久免费 | 初尝人妻少妇中文字幕 | 日本一卡二卡不卡视频查询 | 色综合天天综合狠狠爱 | 国产在线一区二区三区四区五区 | 日本乱人伦片中文三区 | 成人性做爰aaa片免费看不忠 | 亚洲精品一区国产 | 学生妹亚洲一区二区 | 成人精品一区二区三区中文字幕 | 亚洲日韩一区二区 | av人摸人人人澡人人超碰下载 | 久久精品国产一区二区三区 | 国产九九九九九九九a片 | 无码午夜成人1000部免费视频 | 性生交片免费无码看人 | 中文字幕无码热在线视频 | 爆乳一区二区三区无码 | 国产欧美精品一区二区三区 | 蜜臀av无码人妻精品 | 天堂久久天堂av色综合 | 国精产品一区二区三区 | 欧美性生交活xxxxxdddd | 日韩人妻少妇一区二区三区 | 久久国产精品精品国产色婷婷 | 成人无码精品1区2区3区免费看 | 人人妻人人澡人人爽欧美一区九九 | 帮老师解开蕾丝奶罩吸乳网站 | 97人妻精品一区二区三区 | 国产一区二区三区四区五区加勒比 | 国产av剧情md精品麻豆 | 波多野42部无码喷潮在线 | 国产乱人无码伦av在线a | yw尤物av无码国产在线观看 | 久久精品女人的天堂av | 成人精品视频一区二区三区尤物 | 色一情一乱一伦一视频免费看 | 狠狠综合久久久久综合网 | 欧美午夜特黄aaaaaa片 | 欧美国产日产一区二区 | 亚洲精品国偷拍自产在线麻豆 | 国产乱人无码伦av在线a | 2020久久香蕉国产线看观看 | 国产超碰人人爽人人做人人添 | 天天摸天天透天天添 | 国产电影无码午夜在线播放 | 双乳奶水饱满少妇呻吟 | 漂亮人妻洗澡被公强 日日躁 | 麻豆国产人妻欲求不满谁演的 | 狠狠色噜噜狠狠狠狠7777米奇 | 大乳丰满人妻中文字幕日本 | 国产又粗又硬又大爽黄老大爷视 | 亚洲综合在线一区二区三区 | 999久久久国产精品消防器材 | 伦伦影院午夜理论片 | 亚洲中文字幕无码一久久区 | 日本精品少妇一区二区三区 | 色窝窝无码一区二区三区色欲 | 亚洲欧美日韩国产精品一区二区 | 狠狠cao日日穞夜夜穞av | 18禁止看的免费污网站 | 无码人妻丰满熟妇区五十路百度 | 蜜桃臀无码内射一区二区三区 | 综合激情五月综合激情五月激情1 | 久久精品人人做人人综合试看 | 最新国产乱人伦偷精品免费网站 | 一个人免费观看的www视频 | 国语自产偷拍精品视频偷 | 十八禁视频网站在线观看 | 精品无码国产自产拍在线观看蜜 | 无码人妻出轨黑人中文字幕 | 国产真人无遮挡作爱免费视频 | 国产人妻精品一区二区三区 | 国产高清av在线播放 | 亚洲人成人无码网www国产 | 国产情侣作爱视频免费观看 | av在线亚洲欧洲日产一区二区 | 久久精品99久久香蕉国产色戒 | 国产乱人无码伦av在线a | 国产亚洲精品久久久久久大师 | 国産精品久久久久久久 | 中文字幕乱码中文乱码51精品 | 亚洲精品一区三区三区在线观看 | 亚洲国产精品毛片av不卡在线 | 亚洲午夜福利在线观看 | 日本一卡二卡不卡视频查询 | 国产精品无套呻吟在线 | 亚洲综合久久一区二区 | 日日噜噜噜噜夜夜爽亚洲精品 | 精品久久久无码人妻字幂 | 亚洲毛片av日韩av无码 | 久久久久久国产精品无码下载 | 中文字幕无线码 | 国产内射爽爽大片视频社区在线 | 国产精品久久久一区二区三区 | 国产绳艺sm调教室论坛 | 性欧美牲交xxxxx视频 | 人人妻人人澡人人爽人人精品 | 精品人人妻人人澡人人爽人人 | 日本丰满熟妇videos | 免费视频欧美无人区码 | 亚洲国产综合无码一区 | 亚洲精品无码国产 | 国产无套粉嫩白浆在线 | 欧美性生交xxxxx久久久 | 亚洲成色在线综合网站 | 国产人成高清在线视频99最全资源 | 亚洲国产高清在线观看视频 | 精品欧洲av无码一区二区三区 | 中文无码精品a∨在线观看不卡 | 日日麻批免费40分钟无码 | 欧美 日韩 人妻 高清 中文 | 在线播放亚洲第一字幕 | 国产精品久久久久久无码 | 久久www免费人成人片 | 人妻体内射精一区二区三四 | 精品少妇爆乳无码av无码专区 | 无码国模国产在线观看 | 蜜桃臀无码内射一区二区三区 | 少妇高潮喷潮久久久影院 | 精品午夜福利在线观看 | 日韩av无码一区二区三区 | 夜夜躁日日躁狠狠久久av | 强辱丰满人妻hd中文字幕 | 国産精品久久久久久久 | 亚洲精品中文字幕乱码 | 亚洲国产日韩a在线播放 | 亚洲国产av美女网站 | 中文字幕av无码一区二区三区电影 | 未满小14洗澡无码视频网站 | 国产乱人偷精品人妻a片 | 久久久精品欧美一区二区免费 | 人妻天天爽夜夜爽一区二区 | 永久免费观看国产裸体美女 | 300部国产真实乱 | 欧洲vodafone精品性 | 久久99热只有频精品8 | 成人欧美一区二区三区黑人 | 久久久精品国产sm最大网站 | 巨爆乳无码视频在线观看 | 狂野欧美激情性xxxx | 两性色午夜视频免费播放 | 欧美熟妇另类久久久久久多毛 | 少妇激情av一区二区 | 色综合久久久无码网中文 | 欧美freesex黑人又粗又大 | 亚洲一区二区观看播放 | 欧美肥老太牲交大战 | 红桃av一区二区三区在线无码av | 成人试看120秒体验区 | 色老头在线一区二区三区 | 奇米影视7777久久精品人人爽 | 国产精品免费大片 | 精品国产一区二区三区av 性色 | 亚洲一区二区三区香蕉 | 亚洲色www成人永久网址 | 国产亚洲精品久久久久久大师 | 亚洲欧美色中文字幕在线 | 日本va欧美va欧美va精品 | 亚洲一区二区三区四区 | 精品午夜福利在线观看 | 亚洲综合伊人久久大杳蕉 | 久久久久亚洲精品中文字幕 | 午夜时刻免费入口 | 人人澡人人透人人爽 | 女人被男人躁得好爽免费视频 | 在线天堂新版最新版在线8 | 欧美精品一区二区精品久久 | 伊人久久大香线蕉av一区二区 | 久久这里只有精品视频9 | 国产舌乚八伦偷品w中 | 人人妻人人澡人人爽精品欧美 | 久久久精品456亚洲影院 | 欧美自拍另类欧美综合图片区 | 亚洲七七久久桃花影院 | 偷窥村妇洗澡毛毛多 | 国产精品二区一区二区aⅴ污介绍 | 免费无码午夜福利片69 | 久久久久久久女国产乱让韩 | 国产精品久久国产精品99 | 国产一区二区不卡老阿姨 | 精品aⅴ一区二区三区 | 在线看片无码永久免费视频 | 国产乱人偷精品人妻a片 | a片在线免费观看 | 成年美女黄网站色大免费全看 | 欧美第一黄网免费网站 | 中文字幕人妻无码一夲道 | 亚洲精品一区二区三区在线观看 | 欧美熟妇另类久久久久久不卡 | 国产偷抇久久精品a片69 | 男女性色大片免费网站 | 精品夜夜澡人妻无码av蜜桃 | 久久精品中文字幕大胸 | 精品久久8x国产免费观看 | 欧美性黑人极品hd | 日韩精品成人一区二区三区 | 久久精品人人做人人综合试看 | 国产亚洲精品久久久闺蜜 | 色综合天天综合狠狠爱 | 99久久精品无码一区二区毛片 | 俺去俺来也www色官网 | 国产两女互慰高潮视频在线观看 | 人妻少妇精品久久 | 国产莉萝无码av在线播放 | 蜜桃视频插满18在线观看 | 日本免费一区二区三区最新 | 亚洲成a人片在线观看日本 | 亚洲国产精品无码久久久久高潮 | 久久久久久久女国产乱让韩 | 强辱丰满人妻hd中文字幕 | 一本久久a久久精品vr综合 | 7777奇米四色成人眼影 | 亚洲综合久久一区二区 | 国产av剧情md精品麻豆 | 图片小说视频一区二区 | 久久综合香蕉国产蜜臀av | 全球成人中文在线 | 欧美35页视频在线观看 | 人妻尝试又大又粗久久 | 欧美高清在线精品一区 | 成人无码影片精品久久久 | 国产精品无码成人午夜电影 | 亚洲成a人片在线观看日本 | 日韩精品一区二区av在线 | 亚洲日本一区二区三区在线 | 国产做国产爱免费视频 | 亚洲综合无码一区二区三区 | ass日本丰满熟妇pics | 国产无av码在线观看 | 一二三四在线观看免费视频 | 国内少妇偷人精品视频免费 | 国产精华av午夜在线观看 | 熟妇人妻无乱码中文字幕 | 欧美性猛交xxxx富婆 | 人人爽人人澡人人高潮 | √天堂资源地址中文在线 | 黑人玩弄人妻中文在线 | 久久久久免费看成人影片 | 久久99精品久久久久久动态图 | 国产成人无码av在线影院 | 人人爽人人澡人人人妻 | 性欧美牲交xxxxx视频 | 午夜免费福利小电影 | 国产精品无码成人午夜电影 | 色欲综合久久中文字幕网 | 亚洲娇小与黑人巨大交 | 日本乱偷人妻中文字幕 | 亚洲精品久久久久中文第一幕 | 国产精品香蕉在线观看 | 粉嫩少妇内射浓精videos | 国产农村妇女高潮大叫 | 亚洲日韩乱码中文无码蜜桃臀网站 | 欧洲vodafone精品性 | 国产精品无码mv在线观看 | 国产后入清纯学生妹 | 国产精品二区一区二区aⅴ污介绍 | 精品人人妻人人澡人人爽人人 | 亚欧洲精品在线视频免费观看 | 男人扒开女人内裤强吻桶进去 | 少妇太爽了在线观看 | 丰满少妇熟乱xxxxx视频 | 国产成人精品无码播放 | 啦啦啦www在线观看免费视频 | 天天做天天爱天天爽综合网 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 内射白嫩少妇超碰 | 扒开双腿疯狂进出爽爽爽视频 | 国产精品久久久久7777 | 狠狠亚洲超碰狼人久久 | 人妻与老人中文字幕 | 日本精品人妻无码77777 天堂一区人妻无码 | 欧美真人作爱免费视频 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 极品尤物被啪到呻吟喷水 | 波多野结衣乳巨码无在线观看 | 欧美丰满熟妇xxxx性ppx人交 | 国产熟妇高潮叫床视频播放 | 亚洲日韩乱码中文无码蜜桃臀网站 | 久久久久久久女国产乱让韩 | 国产一区二区三区精品视频 | 精品无人国产偷自产在线 | 日日碰狠狠躁久久躁蜜桃 | 亚洲人成网站在线播放942 | 中文字幕亚洲情99在线 | 帮老师解开蕾丝奶罩吸乳网站 | 日韩精品无码一区二区中文字幕 | 欧美老熟妇乱xxxxx | 亚洲中文字幕va福利 | 国产成人精品一区二区在线小狼 | 99riav国产精品视频 | 久久久av男人的天堂 | 亚洲精品欧美二区三区中文字幕 | 中文字幕色婷婷在线视频 | 国产极品视觉盛宴 | 国产尤物精品视频 | 国产精品亚洲一区二区三区喷水 | 色欲久久久天天天综合网精品 | 1000部啪啪未满十八勿入下载 | 久久伊人色av天堂九九小黄鸭 | 一本久久伊人热热精品中文字幕 | 中文字幕乱妇无码av在线 | 国产精品无码成人午夜电影 | 蜜桃视频插满18在线观看 | 2020久久超碰国产精品最新 | 无码中文字幕色专区 | ass日本丰满熟妇pics | 呦交小u女精品视频 | 国产午夜亚洲精品不卡下载 | 国产精品a成v人在线播放 | 无码乱肉视频免费大全合集 | 国内精品久久久久久中文字幕 | 日韩精品无码一区二区中文字幕 | 人人爽人人爽人人片av亚洲 | 中文字幕人妻无码一夲道 | 国产精品理论片在线观看 | 欧美大屁股xxxxhd黑色 | 中文字幕+乱码+中文字幕一区 |