久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > ChatGpt >内容正文

ChatGpt

今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI

發布時間:2024/10/8 ChatGpt 122 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

Group-based Distinctive Image Captioning with Memory Attention

Comment: Accepted at ACM MM 2021 (oral)

Link:?http://arxiv.org/abs/2108.09151

Abstract

Describing images using natural language is widely known as image captioning,which has made consistent progress due to the development of computer visionand natural language generation techniques. Though conventional captioningmodels achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, andSPICE, the ability of captions to distinguish the target image from othersimilar images is under-explored. To generate distinctive captions, a fewpioneers employ contrastive learning or re-weighted the ground-truth captions,which focuses on one single input image. However, the relationships betweenobjects in a similar image group (e.g., items or properties within the samealbum or fine-grained events) are neglected. In this paper, we improve thedistinctiveness of image captions using a Group-based Distinctive CaptioningModel (GdisCap), which compares each image with other images in one similargroup and highlights the uniqueness of each image. In particular, we propose agroup-based memory attention (GMA) module, which stores object features thatare unique among the image group (i.e., with low similarity to objects in otherimages). These unique object features are highlighted when generating captions,resulting in more distinctive captions. Furthermore, the distinctive words inthe ground-truth captions are selected to supervise the language decoder andGMA. Finally, we propose a new evaluation metric, distinctive word rate(DisWordRate) to measure the distinctiveness of captions. Quantitative resultsindicate that the proposed method significantly improves the distinctiveness ofseveral baseline models, and achieves the state-of-the-art performance on bothaccuracy and distinctiveness. Results of a user study agree with thequantitative evaluation and demonstrate the rationality of the new metricDisWordRate.

Airbert: In-domain Pretraining for Vision-and-Language Navigation

Comment: To be published on ICCV 2021. Webpage is at ?https://airbert-vln.github.io/ linking to our dataset, codes and models

Link:?http://arxiv.org/abs/2108.09105

Abstract

Vision-and-language navigation (VLN) aims to enable embodied agents tonavigate in realistic environments using natural language instructions. Giventhe scarcity of domain-specific training data and the high diversity of imageand language inputs, the generalization of VLN agents to unseen environmentsremains challenging. Recent methods explore pretraining to improvegeneralization, however, the use of generic image-caption datasets or existingsmall-scale VLN environments is suboptimal and results in limited improvements.In this work, we introduce BnB, a large-scale and diverse in-domain VLNdataset. We first collect image-caption (IC) pairs from hundreds of thousandsof listings from online rental marketplaces. Using IC pairs we next proposeautomatic strategies to generate millions of VLN path-instruction (PI) pairs.We further propose a shuffling loss that improves the learning of temporalorder inside PI pairs. We use BnB pretrain our Airbert model that can beadapted to discriminative and generative settings and show that it outperformsstate of the art for Room-to-Room (R2R) navigation and Remote ReferringExpression (REVERIE) benchmarks. Moreover, our in-domain pretrainingsignificantly increases performance on a challenging few-shot VLN evaluation,where we train the model only on VLN instructions from a few houses.

GEDIT: Geographic-Enhanced and Dependency-Guided Tagging for Joint POI and Accessibility Extraction at Baidu Maps

Comment: Accepted by CIKM'21

Link:?http://arxiv.org/abs/2108.09104

Abstract

Providing timely accessibility reminders of a point-of-interest (POI) plays avital role in improving user satisfaction of finding places and making visitingdecisions. However, it is difficult to keep the POI database in sync with thereal-world counterparts due to the dynamic nature of business changes. Toalleviate this problem, we formulate and present a practical solution thatjointly extracts POI mentions and identifies their coupled accessibility labelsfrom unstructured text. We approach this task as a sequence tagging problem,where the goal is to producepairs fromunstructured text. This task is challenging because of two main issues: (1) POInames are often newly-coined words so as to successfully register new entitiesor brands and (2) there may exist multiple pairs in the text, whichnecessitates dealing with one-to-many or many-to-one mapping to make each POIcoupled with its accessibility label. To this end, we propose aGeographic-Enhanced and Dependency-guIded sequence Tagging (GEDIT) model toconcurrently address the two challenges. First, to alleviate challenge #1, wedevelop a geographic-enhanced pre-trained model to learn the textrepresentations. Second, to mitigate challenge #2, we apply a relational graphconvolutional network to learn the tree node representations from the parseddependency tree. Finally, we construct a neural sequence tagging model byintegrating and feeding the previously pre-learned representations into a CRFlayer. Extensive experiments conducted on a real-world dataset demonstrate thesuperiority and effectiveness of GEDIT. In addition, it has already beendeployed in production at Baidu Maps. Statistics show that the proposedsolution can save significant human effort and labor costs to deal with thesame amount of documents, which confirms that it is a practical way for POIaccessibility maintenance.

SoMeSci- A 5 Star Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles

Comment: Preprint of CIKM 2021 Resource Paper, 10 pages

Link:?http://arxiv.org/abs/2108.09070

Abstract

Knowledge about software used in scientific investigations is important forseveral reasons, for instance, to enable an understanding of provenance andmethods involved in data handling. However, software is usually not formallycited, but rather mentioned informally within the scholarly description of theinvestigation, raising the need for automatic information extraction anddisambiguation. Given the lack of reliable ground truth data, we presentSoMeSci (Software Mentions in Science) a gold standard knowledge graph ofsoftware mentions in scientific articles. It contains high quality annotations(IRR: $\kappa{=}.82$) of 3756 software mentions in 1367 PubMed Centralarticles. Besides the plain mention of the software, we also provide relationlabels for additional information, such as the version, the developer, a URL orcitations. Moreover, we distinguish between different types, such asapplication, plugin or programming environment, as well as different types ofmentions, such as usage or creation. To the best of our knowledge, SoMeSci isthe most comprehensive corpus about software mentions in scientific articles,providing training samples for Named Entity Recognition, Relation Extraction,Entity Disambiguation, and Entity Linking. Finally, we sketch potential usecases and provide baseline results.

Twitter User Representation using Weakly Supervised Graph Embedding

Comment: accepted at 16th International AAAI Conference on Web and Social ?Media (ICWSM-2022), direct accept from May 2021 submission, 12 pages

Link:?http://arxiv.org/abs/2108.08988

Abstract

Social media platforms provide convenient means for users to participate inmultiple online activities on various contents and create fast widespreadinteractions. However, this rapidly growing access has also increased thediverse information, and characterizing user types to understand people'slifestyle decisions shared in social media is challenging. In this paper, wepropose a weakly supervised graph embedding based framework for understandinguser types. We evaluate the user embedding learned using weak supervision overwell-being related tweets from Twitter, focusing on 'Yoga', 'Keto diet'.Experiments on real-world datasets demonstrate that the proposed frameworkoutperforms the baselines for detecting user types. Finally, we illustrate dataanalysis on different types of users (e.g., practitioner vs. promotional) fromour dataset. While we focus on lifestyle-related tweets (i.e., yoga, keto), ourmethod for constructing user representation readily generalizes to otherdomains.

SMedBERT: A Knowledge-Enhanced Pre-trained Language Model with Structured Semantics for Medical Text Mining

Comment: ACL2021

Link:?http://arxiv.org/abs/2108.08983

Abstract

Recently, the performance of Pre-trained Language Models (PLMs) has beensignificantly improved by injecting knowledge facts to enhance their abilitiesof language understanding. For medical domains, the background knowledgesources are especially useful, due to the massive medical terms and theircomplicated relations are difficult to understand in text. In this work, weintroduce SMedBERT, a medical PLM trained on large-scale medical corpora,incorporating deep structured semantic knowledge from neighbors oflinked-entity.In SMedBERT, the mention-neighbor hybrid attention is proposed tolearn heterogeneous-entity information, which infuses the semanticrepresentations of entity types into the homogeneous neighboring entitystructure. Apart from knowledge integration as external features, we propose toemploy the neighbors of linked-entities in the knowledge graph as additionalglobal contexts of text mentions, allowing them to communicate via sharedneighbors, thus enrich their semantic representations. Experiments demonstratethat SMedBERT significantly outperforms strong baselines in variousknowledge-intensive Chinese medical tasks. It also improves the performance ofother tasks such as question answering, question matching and natural languageinference.

Discriminative Region-based Multi-Label Zero-Shot Learning

Comment: Accepted to ICCV 2021. Source code is available at ?https://github.com/akshitac8/BiAM

Link:?http://arxiv.org/abs/2108.09301

Abstract

Multi-label zero-shot learning (ZSL) is a more realistic counter-part ofstandard single-label ZSL since several objects can co-exist in a naturalimage. However, the occurrence of multiple objects complicates the reasoningand requires region-specific processing of visual features to preserve theircontextual cues. We note that the best existing multi-label ZSL method takes ashared approach towards attending to region features with a common set ofattention maps for all the classes. Such shared maps lead to diffusedattention, which does not discriminatively focus on relevant locations when thenumber of classes are large. Moreover, mapping spatially-pooled visual featuresto the class semantics leads to inter-class feature entanglement, thushampering the classification. Here, we propose an alternate approach towardsregion-based discriminability-preserving multi-label zero-shot classification.Our approach maintains the spatial resolution to preserve region-levelcharacteristics and utilizes a bi-level attention module (BiAM) to enrich thefeatures by incorporating both region and scene context information. Theenriched region-level features are then mapped to the class semantics and onlytheir class predictions are spatially pooled to obtain image-level predictions,thereby keeping the multi-class features disentangled. Our approach sets a newstate of the art on two large-scale multi-label zero-shot benchmarks: NUS-WIDEand Open Images. On NUS-WIDE, our approach achieves an absolute gain of 6.9%mAP for ZSL, compared to the best published results.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

Comment: Accepted at ICCV 2021; Code available: ?https://github.com/selflein/MG-GAN

Link:?http://arxiv.org/abs/2108.09274

Abstract

Pedestrian trajectory prediction is challenging due to its uncertain andmultimodal nature. While generative adversarial networks can learn adistribution over future trajectories, they tend to predict out-of-distributionsamples when the distribution of future trajectories is a mixture of multiple,possibly disconnected modes. To address this issue, we propose amulti-generator model for pedestrian trajectory prediction. Each generatorspecializes in learning a distribution over trajectories routing towards one ofthe primary modes in the scene, while a second network learns a categoricaldistribution over these generators, conditioned on the dynamics and sceneinput. This architecture allows us to effectively sample from specializedgenerators and to significantly reduce the out-of-distribution samples comparedto single generator methods.

Continual Learning for Image-Based Camera Localization

Comment: ICCV 2021

Link:?http://arxiv.org/abs/2108.09112

Abstract

For several emerging technologies such as augmented reality, autonomousdriving and robotics, visual localization is a critical component. Directlyregressing camera pose/3D scene coordinates from the input image using deepneural networks has shown great potential. However, such methods assume astationary data distribution with all scenes simultaneously available duringtraining. In this paper, we approach the problem of visual localization in acontinual learning setup -- whereby the model is trained on scenes in anincremental manner. Our results show that similar to the classification domain,non-stationary data induces catastrophic forgetting in deep networks for visuallocalization. To address this issue, a strong baseline based on storing andreplaying images from a fixed buffer is proposed. Furthermore, we propose a newsampling method based on coverage score (Buff-CS) that adapts the existingsampling strategies in the buffering process to the problem of visuallocalization. Results demonstrate consistent improvements over standardbuffering methods on two challenging datasets -- 7Scenes, 12Scenes, and also19Scenes by combining the former scenes.

Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09108

Abstract

This paper proposes a novel deep learning approach for single image defocusdeblurring based on inverse kernels. In a defocused image, the blur shapes aresimilar among pixels although the blur sizes can spatially vary. To utilize theproperty with inverse kernels, we exploit the observation that when only thesize of a defocus blur changes while keeping the shape, the shape of thecorresponding inverse kernel remains the same and only the scale changes. Basedon the observation, we propose a kernel-sharing parallel atrous convolutional(KPAC) block specifically designed by incorporating the property of inversekernels for single image defocus deblurring. To effectively simulate theinvariant shapes of inverse kernels with different scales, KPAC shares the sameconvolutional weights among multiple atrous convolution layers. To efficientlysimulate the varying scales of inverse kernels, KPAC consists of only a fewatrous convolution layers with different dilations and learns per-pixel scaleattentions to aggregate the outputs of the layers. KPAC also utilizes the shapeattention to combine the outputs of multiple convolution filters in each atrousconvolution layer, to deal with defocus blur with a slightly varying shape. Wedemonstrate that our approach achieves state-of-the-art performance with a muchsmaller number of parameters than previous methods.

Towards Understanding the Generative Capability of Adversarially Robust Classifiers

Comment: Accepted by ICCV 2021, Oral

Link:?http://arxiv.org/abs/2108.09093

Abstract

Recently, some works found an interesting phenomenon that adversariallyrobust classifiers can generate good images comparable to generative models. Weinvestigate this phenomenon from an energy perspective and provide a novelexplanation. We reformulate adversarial example generation, adversarialtraining, and image generation in terms of an energy function. We find thatadversarial training contributes to obtaining an energy function that is flatand has low energy around the real data, which is the key for generativecapability. Based on our new understanding, we further propose a betteradversarial training method, Joint Energy Adversarial Training (JEAT), whichcan generate high-quality images and achieve new state-of-the-art robustnessunder a wide range of attacks. The Inception Score of the images (CIFAR-10)generated by JEAT is 8.80, much better than original robust classifiers (7.50).In particular, we achieve new state-of-the-art robustness on CIFAR-10 (from57.20% to 62.04%) and CIFAR-100 (from 30.03% to 30.18%) without extra trainingdata.

AutoLay: Benchmarking amodal layout estimation for autonomous driving

Comment: published in 2020 IEEE/RSJ International Conference on Intelligent ?Robots and Systems (IROS)

Link:?http://arxiv.org/abs/2108.09047

Abstract

Given an image or a video captured from a monocular camera, amodal layoutestimation is the task of predicting semantics and occupancy in bird's eyeview. The term amodal implies we also reason about entities in the scene thatare occluded or truncated in image space. While several recent efforts havetackled this problem, there is a lack of standardization in task specification,datasets, and evaluation protocols. We address these gaps with AutoLay, adataset and benchmark for amodal layout estimation from monocular images.AutoLay encompasses driving imagery from two popular datasets: KITTI andArgoverse. In addition to fine-grained attributes such as lanes, sidewalks, andvehicles, we also provide semantically annotated 3D point clouds. We implementseveral baselines and bleeding edge approaches, and release our data and code.

Out-of-boundary View Synthesis Towards Full-Frame Video Stabilization

Comment: 10 pages, 6 figures, accepted by ICCV2021

Link:?http://arxiv.org/abs/2108.09041

Abstract

Warping-based video stabilizers smooth camera trajectory by constraining eachpixel's displacement and warp stabilized frames from unstable ones accordingly.However, since the view outside the boundary is not available during warping,the resulting holes around the boundary of the stabilized frame must bediscarded (i.e., cropping) to maintain visual consistency, and thus does leadsto a tradeoff between stability and cropping ratio. In this paper, we make afirst attempt to address this issue by proposing a new Out-of-boundary ViewSynthesis (OVS) method. By the nature of spatial coherence between adjacentframes and within each frame, OVS extrapolates the out-of-boundary view byaligning adjacent frames to each reference one. Technically, it firstcalculates the optical flow and propagates it to the outer boundary regionaccording to the affinity, and then warps pixels accordingly. OVS can beintegrated into existing warping-based stabilizers as a plug-and-play module tosignificantly improve the cropping ratio of the stabilized results. Inaddition, stability is improved because the jitter amplification effect causedby cropping and resizing is reduced. Experimental results on the NUS benchmarkshow that OVS can improve the performance of five representativestate-of-the-art methods in terms of objective metrics and subjective visualquality. The code is publicly available athttps://github.com/Annbless/OVS_Stabilization.

Video-based Person Re-identification with Spatial and Temporal Memory Networks

Comment: International Conference on Computer Vision (ICCV) 2021

Link:?http://arxiv.org/abs/2108.09039

Abstract

Video-based person re-identification (reID) aims to retrieve person videoswith the same identity as a query person across multiple cameras. Spatial andtemporal distractors in person videos, such as background clutter and partialocclusions over frames, respectively, make this task much more challenging thanimage-based person reID. We observe that spatial distractors appearconsistently in a particular location, and temporal distractors show severalpatterns, e.g., partial occlusions occur in the first few frames, where suchpatterns provide informative cues for predicting which frames to focus on(i.e., temporal attentions). Based on this, we introduce a novel Spatial andTemporal Memory Networks (STMN). The spatial memory stores features for spatialdistractors that frequently emerge across video frames, while the temporalmemory saves attentions which are optimized for typical temporal patterns inperson videos. We leverage the spatial and temporal memories to refineframe-level person representations and to aggregate the refined frame-levelfeatures into a sequence-level person representation, respectively, effectivelyhandling spatial and temporal distractors in person videos. We also introduce amemory spread loss preventing our model from addressing particular items onlyin the memories. Experimental results on standard benchmarks, including MARS,DukeMTMC-VideoReID, and LS-VID, demonstrate the effectiveness of our method.

Is it Time to Replace CNNs with Transformers for Medical Images?

Comment: Originally published at the ICCV 2021 Workshop on Computer Vision for ?Automated Medical Diagnosis (CVAMD)

Link:?http://arxiv.org/abs/2108.09038

Abstract

Convolutional Neural Networks (CNNs) have reigned for a decade as the defacto approach to automated medical image diagnosis. Recently, visiontransformers (ViTs) have appeared as a competitive alternative to CNNs,yielding similar levels of performance while possessing several interestingproperties that could prove beneficial for medical imaging tasks. In this work,we explore whether it is time to move to transformer-based models or if weshould keep working with CNNs - can we trivially switch to transformers? If so,what are the advantages and drawbacks of switching to ViTs for medical imagediagnosis? We consider these questions in a series of experiments on threemainstream medical image datasets. Our findings show that, while CNNs performbetter when trained from scratch, off-the-shelf vision transformers usingdefault hyperparameters are on par with CNNs when pretrained on ImageNet, andoutperform their CNN counterparts when pretrained using self-supervision.

AdvDrop: Adversarial Attack to DNNs by Dropping Information

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09034

Abstract

Human can easily recognize visual objects with lost information: even losingmost details with only contour reserved, e.g. cartoon. However, in terms ofvisual perception of Deep Neural Networks (DNNs), the ability for recognizingabstract objects (visual objects with lost information) is still a challenge.In this work, we investigate this issue from an adversarial viewpoint: will theperformance of DNNs decrease even for the images only losing a littleinformation? Towards this end, we propose a novel adversarial attack, named\textit{AdvDrop}, which crafts adversarial examples by dropping existinginformation of images. Previously, most adversarial attacks add extradisturbing information on clean images explicitly. Opposite to previous works,our proposed work explores the adversarial robustness of DNN models in a novelperspective by dropping imperceptible details to craft adversarial examples. Wedemonstrate the effectiveness of \textit{AdvDrop} by extensive experiments, andshow that this new type of adversarial examples is more difficult to bedefended by current defense systems.

Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation

Comment: To appear in ICCV 2021

Link:?http://arxiv.org/abs/2108.09025

Abstract

We present a novel semi-supervised semantic segmentation method which jointlyachieves two desiderata of segmentation model regularities: the label-spaceconsistency property between image augmentations and the feature-spacecontrastive property among different pixels. We leverage the pixel-level L2loss and the pixel contrastive loss for the two purposes respectively. Toaddress the computational efficiency issue and the false negative noise issueinvolved in the pixel contrastive loss, we further introduce and investigateseveral negative sampling techniques. Extensive experiments demonstrate thestate-of-the-art performance of our method (PC2Seg) with the DeepLab-v3+architecture, in several challenging semi-supervised settings derived from theVOC, Cityscapes, and COCO datasets.

Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09020

Abstract

Continual learning is the problem of learning and retaining knowledge throughtime over multiple tasks and environments. Research has primarily focused onthe incremental classification setting, where new tasks/classes are added atdiscrete time intervals. Such an "offline" setting does not evaluate theability of agents to learn effectively and efficiently, since an agent canperform multiple learning epochs without any time limitation when a task isadded. We argue that "online" continual learning, where data is a singlecontinuous stream without task boundaries, enables evaluating both informationretention and online learning efficacy. In online continual learning, eachincoming small batch of data is first used for testing and then added to thetraining set, making the problem truly online. Trained models are laterevaluated on historical data to assess information retention. We introduce anew benchmark for online continual visual learning that exhibits large scaleand natural distribution shifts. Through a large-scale analysis, we identifycritical and previously unobserved phenomena of gradient-based optimization incontinual learning, and propose effective strategies for improvinggradient-based online continual learning with real data. The source code anddataset are available in: https://github.com/IntelLabs/continuallearning.

DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.09017

Abstract

Few-shot object detection, which aims at detecting novel objects rapidly fromextremely few annotated examples of previously unseen classes, has attractedsignificant research interest in the community. Most existing approaches employthe Faster R-CNN as basic detection framework, yet, due to the lack of tailoredconsiderations for data-scarce scenario, their performance is often notsatisfactory. In this paper, we look closely into the conventional Faster R-CNNand analyze its contradictions from two orthogonal perspectives, namelymulti-stage (RPN vs. RCNN) and multi-task (classification vs. localization). Toresolve these issues, we propose a simple yet effective architecture, namedDecoupled Faster R-CNN (DeFRCN). To be concrete, we extend Faster R-CNN byintroducing Gradient Decoupled Layer for multi-stage decoupling andPrototypical Calibration Block for multi-task decoupling. The former is a noveldeep layer with redefining the feature-forward operation and gradient-backwardoperation for decoupling its subsequent layer and preceding layer, and thelatter is an offline prototype-based classification model with taking theproposals from detector as input and boosting the original classificationscores with additional pairwise scores for calibration. Extensive experimentson multiple benchmarks show our framework is remarkably superior to otherexisting approaches and establishes a new state-of-the-art in few-shotliterature.

Dual Projection Generative Adversarial Networks for Conditional Image Generation

Comment: Accepted at ICCV-21

Link:?http://arxiv.org/abs/2108.09016

Abstract

Conditional Generative Adversarial Networks (cGANs) extend the standardunconditional GAN framework to learning joint data-label distributions fromsamples, and have been established as powerful generative models capable ofgenerating high-fidelity imagery. A challenge of training such a model lies inproperly infusing class information into its generator and discriminator. Forthe discriminator, class conditioning can be achieved by either (1) directlyincorporating labels as input or (2) involving labels in an auxiliaryclassification loss. In this paper, we show that the former directly aligns theclass-conditioned fake-and-real data distributions$P(\text{image}|\text{class})$ ({\em data matching}), while the latter alignsdata-conditioned class distributions $P(\text{class}|\text{image})$ ({\em labelmatching}). Although class separability does not directly translate to samplequality and becomes a burden if classification itself is intrinsicallydifficult, the discriminator cannot provide useful guidance for the generatorif features of distinct classes are mapped to the same point and thus becomeinseparable. Motivated by this intuition, we propose a Dual Projection GAN(P2GAN) model that learns to balance between {\em data matching} and {\em labelmatching}. We then propose an improved cGAN model with Auxiliary Classificationthat directly aligns the fake and real conditionals$P(\text{class}|\text{image})$ by minimizing their $f$-divergence. Experimentson a synthetic Mixture of Gaussian (MoG) dataset and a variety of real-worlddatasets including CIFAR100, ImageNet, and VGGFace2 demonstrate the efficacy ofour proposed models.

GAN Inversion for Out-of-Range Images with Geometric Transformations

Comment: Accepted to ICCV 2021. For supplementary material, see ?https://kkang831.github.io/publication/ICCV_2021_BDInvert/

Link:?http://arxiv.org/abs/2108.08998

Abstract

For successful semantic editing of real images, it is critical for a GANinversion method to find an in-domain latent code that aligns with the domainof a pre-trained GAN model. Unfortunately, such in-domain latent codes can befound only for in-range images that align with the training images of a GANmodel. In this paper, we propose BDInvert, a novel GAN inversion approach tosemantic editing of out-of-range images that are geometrically unaligned withthe training images of a GAN model. To find a latent code that is semanticallyeditable, BDInvert inverts an input out-of-range image into an alternativelatent space than the original latent space. We also propose a regularizedinversion method to find a solution that supports semantic editing in thealternative space. Our experiments show that BDInvert effectively supportssemantic editing of out-of-range images with geometric transformations.

Few Shot Activity Recognition Using Variational Inference

Comment: Accepted in IJCAI 2021 - 3RD INTERNATIONAL WORKSHOP ON DEEP LEARNING ?FOR HUMAN ACTIVITY RECOGNITION. arXiv admin note: text overlap with ?arXiv:1611.09630, arXiv:1909.07945 by other authors

Link:?http://arxiv.org/abs/2108.08990

Abstract

There has been a remarkable progress in learning a model which couldrecognise novel classes with only a few labeled examples in the last few years.Few-shot learning (FSL) for action recognition is a challenging task ofrecognising novel action categories which are represented by few instances inthe training data. We propose a novel variational inference based architecturalframework (HF-AR) for few shot activity recognition. Our framework leveragesvolume-preserving Householder Flow to learn a flexible posterior distributionof the novel classes. This results in better performance as compared tostate-of-the-art few shot approaches for human activity recognition. approachconsists of base model and an adapter model. Our architecture consists of abase model and an adapter model. The base model is trained on seen classes andit computes an embedding that represent the spatial and temporal insightsextracted from the input video, e.g. combination of Resnet-152 and LSTM basedencoder-decoder model. The adapter model applies a series of Householdertransformations to compute a flexible posterior distribution that lends higheraccuracy in the few shot approach. Extensive experiments on three well-knowndatasets: UCF101, HMDB51 and Something-Something-V2, demonstrate similar orbetter performance on 1-shot and 5-shot classification as compared tostate-of-the-art few shot approaches that use only RGB frame sequence as input.To the best of our knowledge, we are the first to explore variational inferencealong with householder transformations to capture the full rank covariancematrix of posterior distribution, for few shot learning in activityrecognition.

Parsing Birdsong with Deep Audio Embeddings

Comment: IJCAI 2021 Artificial Intelligence for Social Good (AI4SG) Workshop

Link:?http://arxiv.org/abs/2108.09203

Abstract

Monitoring of bird populations has played a vital role in conservationefforts and in understanding biodiversity loss. The automation of this processhas been facilitated by both sensing technologies, such as passive acousticmonitoring, and accompanying analytical tools, such as deep learning. However,machine learning models frequently have difficulty generalizing to examples notencountered in the training data. In our work, we present a semi-supervisedapproach to identify characteristic calls and environmental noise. We utilizeseveral methods to learn a latent representation of audio samples, including aconvolutional autoencoder and two pre-trained networks, and group the resultingembeddings for a domain expert to identify cluster labels. We show that ourapproach can improve classification precision and provide insight into thelatent structure of environmental acoustic datasets.

Reinforcement Learning to Optimize Lifetime Value in Cold-Start Recommendation

Comment: Accepted by CIKM 2021

Link:?http://arxiv.org/abs/2108.09141

Abstract

Recommender system plays a crucial role in modern E-commerce platform. Due tothe lack of historical interactions between users and items, cold-startrecommendation is a challenging problem. In order to alleviate the cold-startissue, most existing methods introduce content and contextual information asthe auxiliary information. Nevertheless, these methods assume the recommendeditems behave steadily over time, while in a typical E-commerce scenario, itemsgenerally have very different performances throughout their life period. Insuch a situation, it would be beneficial to consider the long-term return fromthe item perspective, which is usually ignored in conventional methods.Reinforcement learning (RL) naturally fits such a long-term optimizationproblem, in which the recommender could identify high potential items,proactively allocate more user impressions to boost their growth, thereforeimprove the multi-period cumulative gains. Inspired by this idea, we model theprocess as a Partially Observable and Controllable Markov Decision Process(POC-MDP), and propose an actor-critic RL framework (RL-LTV) to incorporate theitem lifetime values (LTV) into the recommendation. In RL-LTV, the criticstudies historical trajectories of items and predict the future LTV of freshitem, while the actor suggests a score-based policy which maximizes the futureLTV expectation. Scores suggested by the actor are then combined with classicalranking scores in a dual-rank framework, therefore the recommendation isbalanced with the LTV consideration. Our method outperforms the strong livebaseline with a relative improvement of 8.67% and 18.03% on IPV and GMV ofcold-start items, on one of the largest E-commerce platform.

Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS

Comment: Accepted to the Workshop on 'Data Science Meets Optimisation' at ?IJCAI 2021

Link:?http://arxiv.org/abs/2108.09126

Abstract

Lots of effort in neural architecture search (NAS) research has beendedicated to algorithmic development, aiming at designing more efficient andless costly methods. Nonetheless, the investigation of the initialization ofthese techniques remain scare, and currently most NAS methodologies rely onstochastic initialization procedures, because acquiring information prior tosearch is costly. However, the recent availability of NAS benchmarks haveenabled low computational resources prototyping. In this study, we propose toaccelerate a NAS algorithm using a data-driven initialization technique,leveraging the availability of NAS benchmarks. Particularly, we proposed atwo-step methodology. First, a calibrated clustering analysis of the searchspace is performed. Second, the centroids are extracted and used to initializea NAS algorithm. We tested our proposal using Aging Evolution, an evolutionaryalgorithm, on NAS-bench-101. The results show that, compared to a randominitialization, a faster convergence and a better performance of the finalsolution is achieved.

DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction

Comment: This paper has been accepted by CIKM 2021 Resource Track

Link:?http://arxiv.org/abs/2108.09091

Abstract

Nowadays, with the rapid development of IoT (Internet of Things) and CPS(Cyber-Physical Systems) technologies, big spatiotemporal data are beinggenerated from mobile phones, car navigation systems, and traffic sensors. Byleveraging state-of-the-art deep learning technologies on such data, urbantraffic prediction has drawn a lot of attention in AI and IntelligentTransportation System community. The problem can be uniformly modeled with a 3Dtensor (T, N, C), where T denotes the total time steps, N denotes the size ofthe spatial domain (i.e., mesh-grids or graph-nodes), and C denotes thechannels of information. According to the specific modeling strategy, thestate-of-the-art deep learning models can be divided into three categories:grid-based, graph-based, and multivariate time-series models. In this study, wefirst synthetically review the deep traffic models as well as the widely useddatasets, then build a standard benchmark to comprehensively evaluate theirperformances with the same settings and metrics. Our study named DL-Traff isimplemented with two most popular deep learning frameworks, i.e., TensorFlowand PyTorch, which is already publicly available as two GitHub repositorieshttps://github.com/deepkashiwa20/DL-Traff-Grid andhttps://github.com/deepkashiwa20/DL-Traff-Graph. With DL-Traff, we hope todeliver a useful resource to researchers who are interested in spatiotemporaldata analysis.

FedSkel: Efficient Federated Learning on Heterogeneous Systems with Skeleton Gradients Update

Comment: CIKM 2021

Link:?http://arxiv.org/abs/2108.09081

Abstract

Federated learning aims to protect users' privacy while performing dataanalysis from different participants. However, it is challenging to guaranteethe training efficiency on heterogeneous systems due to the variouscomputational capabilities and communication bottlenecks. In this work, wepropose FedSkel to enable computation-efficient and communication-efficientfederated learning on edge devices by only updating the model's essentialparts, named skeleton networks. FedSkel is evaluated on real edge devices withimbalanced datasets. Experimental results show that it could achieve up to5.52$\times$ speedups for CONV layers' back-propagation, 1.82$\times$ speedupsfor the whole training process, and reduce 64.8% communication cost, withnegligible accuracy loss.

ASAT: Adaptively Scaled Adversarial Training in Time Series

Comment: Accepted to be appeared in Workshop on Machine Learning in Finance ?(KDD-MLF) 2021

Link:?http://arxiv.org/abs/2108.08976

Abstract

Adversarial training is a method for enhancing neural networks to improve therobustness against adversarial examples. Besides the security concerns ofpotential adversarial examples, adversarial training can also improve theperformance of the neural networks, train robust neural networks, and provideinterpretability for neural networks. In this work, we take the first step tointroduce adversarial training in time series analysis by taking the financefield as an example. Rethinking existing researches of adversarial training, wepropose the adaptively scaled adversarial training (ASAT) in time seriesanalysis, by treating data at different time slots with time-dependentimportance weights. Experimental results show that the proposed ASAT canimprove both the accuracy and the adversarial robustness of neural networks.Besides enhancing neural networks, we also propose the dimension-wiseadversarial sensitivity indicator to probe the sensitivities and importance ofinput dimensions. With the proposed indicator, we can explain the decisionbases of black box neural networks.

Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey

Comment: 22 pages, 7 figures

Link:?http://arxiv.org/abs/2108.09003

Abstract

Broad Explainable Artificial Intelligence moves away from interpretingindividual decisions based on a single datum and aims to provide integratedexplanations from multiple machine learning algorithms into a coherentexplanation of an agent's behaviour that is aligned to the communication needsof the explainee. Reinforcement Learning (RL) methods, we propose, provide apotential backbone for the cognitive model required for the development ofBroad-XAI. RL represents a suite of approaches that have had increasing successin solving a range of sequential decision-making problems. However, thesealgorithms all operate as black-box problem solvers, where they obfuscate theirdecision-making policy through a complex array of values and functions.EXplainable RL (XRL) is relatively recent field of research that aims todevelop techniques to extract concepts from the agent's: perception of theenvironment; intrinsic/extrinsic motivations/beliefs; Q-values, goals andobjectives. This paper aims to introduce a conceptual framework, called theCausal XRL Framework (CXF), that unifies the current XRL research and uses RLas a backbone to the development of Broad-XAI. Additionally, we recognise thatRL methods have the ability to incorporate a range of technologies to allowagents to adapt to their environment. CXF is designed for the incorporation ofmany standard RL extensions and integrated with external ontologies andcommunication facilities so that the agent can answer questions that explainoutcomes and justify its decisions.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

亚洲精品综合五月久久小说 | 日本爽爽爽爽爽爽在线观看免 | 人人妻人人澡人人爽欧美精品 | 国产一区二区三区四区五区加勒比 | 免费无码午夜福利片69 | 亚洲国产av美女网站 | 蜜臀aⅴ国产精品久久久国产老师 | 国产精品亚洲一区二区三区喷水 | 老司机亚洲精品影院无码 | 国产精品永久免费视频 | 天天摸天天碰天天添 | 欧美zoozzooz性欧美 | 亚洲国产成人av在线观看 | 98国产精品综合一区二区三区 | 中文字幕无码日韩欧毛 | 特级做a爰片毛片免费69 | 亚洲精品久久久久中文第一幕 | 国产成人无码午夜视频在线观看 | 久久久亚洲欧洲日产国码αv | 丰满少妇高潮惨叫视频 | 国语精品一区二区三区 | 人妻有码中文字幕在线 | 亚洲国产精品无码一区二区三区 | 夜夜高潮次次欢爽av女 | 99久久精品无码一区二区毛片 | 丰满人妻精品国产99aⅴ | 欧美日韩一区二区免费视频 | 天天拍夜夜添久久精品大 | 国色天香社区在线视频 | 99er热精品视频 | 曰韩少妇内射免费播放 | 丰满人妻被黑人猛烈进入 | 成人无码影片精品久久久 | 国产高潮视频在线观看 | 久久午夜无码鲁丝片午夜精品 | 国产亚洲精品久久久久久 | 一本色道久久综合亚洲精品不卡 | 久久精品国产亚洲精品 | 国产特级毛片aaaaaa高潮流水 | 2019午夜福利不卡片在线 | 国产凸凹视频一区二区 | 欧美 丝袜 自拍 制服 另类 | 国产内射爽爽大片视频社区在线 | 久久精品人妻少妇一区二区三区 | 乱人伦中文视频在线观看 | 国产农村妇女高潮大叫 | 99在线 | 亚洲 | 老熟女乱子伦 | 久久zyz资源站无码中文动漫 | 国产精品久久国产精品99 | 午夜丰满少妇性开放视频 | 在线观看国产午夜福利片 | 成人免费无码大片a毛片 | 国产精品内射视频免费 | 欧美精品国产综合久久 | 又粗又大又硬毛片免费看 | 国内精品人妻无码久久久影院 | 国产精品亚洲а∨无码播放麻豆 | 好男人www社区 | 亚洲欧美日韩成人高清在线一区 | 国产免费久久久久久无码 | 性欧美熟妇videofreesex | 亚洲爆乳精品无码一区二区三区 | 中国大陆精品视频xxxx | 无码福利日韩神码福利片 | 97精品国产97久久久久久免费 | 久久精品中文闷骚内射 | 老熟妇仑乱视频一区二区 | 亚洲色www成人永久网址 | 欧美熟妇另类久久久久久不卡 | 人妻体内射精一区二区三四 | 在线播放无码字幕亚洲 | 色综合久久久无码网中文 | 东北女人啪啪对白 | 国产一区二区三区四区五区加勒比 | 男女性色大片免费网站 | 性色欲网站人妻丰满中文久久不卡 | 亚洲国产精品久久久久久 | 久久精品中文闷骚内射 | 麻豆av传媒蜜桃天美传媒 | 福利一区二区三区视频在线观看 | 久久久无码中文字幕久... | 国产成人精品久久亚洲高清不卡 | 成人精品一区二区三区中文字幕 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲成a人一区二区三区 | 黄网在线观看免费网站 | 亚洲熟妇色xxxxx欧美老妇 | 天天摸天天碰天天添 | 精品 日韩 国产 欧美 视频 | 亚洲精品鲁一鲁一区二区三区 | 欧美高清在线精品一区 | 精品水蜜桃久久久久久久 | 精品国产av色一区二区深夜久久 | 波多野结衣av在线观看 | 在线a亚洲视频播放在线观看 | 久久综合激激的五月天 | 国产又爽又猛又粗的视频a片 | 国产精品沙发午睡系列 | 精品无人国产偷自产在线 | 久久久久免费精品国产 | 久久97精品久久久久久久不卡 | 亚拍精品一区二区三区探花 | 亚洲成av人片天堂网无码】 | 亚洲欧美国产精品久久 | 成人无码精品一区二区三区 | 久久综合狠狠综合久久综合88 | 丰满少妇高潮惨叫视频 | 成人片黄网站色大片免费观看 | 国产在线精品一区二区三区直播 | 久9re热视频这里只有精品 | 国内精品一区二区三区不卡 | 中文字幕+乱码+中文字幕一区 | 未满小14洗澡无码视频网站 | 99视频精品全部免费免费观看 | 亚洲精品国产精品乱码视色 | 久久久久久国产精品无码下载 | 兔费看少妇性l交大片免费 | 国产精品多人p群无码 | 荡女精品导航 | 欧洲熟妇色 欧美 | 中文字幕久久久久人妻 | 亚洲成av人综合在线观看 | 国产精品a成v人在线播放 | 成人aaa片一区国产精品 | 久久久久国色av免费观看性色 | 午夜精品一区二区三区的区别 | 国产精品嫩草久久久久 | 亚洲国产精品无码久久久久高潮 | 亚洲中文字幕成人无码 | 国产成人精品久久亚洲高清不卡 | 国产精品视频免费播放 | 亚洲日本va中文字幕 | 夫妻免费无码v看片 | 精品无码一区二区三区爱欲 | 国产精品爱久久久久久久 | 久久99精品久久久久久 | 成人影院yy111111在线观看 | 国产莉萝无码av在线播放 | 色婷婷欧美在线播放内射 | 国产精品无码一区二区三区不卡 | 午夜男女很黄的视频 | 兔费看少妇性l交大片免费 | 久久精品女人天堂av免费观看 | 亚洲成av人在线观看网址 | 思思久久99热只有频精品66 | 精品无码一区二区三区的天堂 | 无码一区二区三区在线 | 一本精品99久久精品77 | 国产亚洲人成在线播放 | 亚洲无人区一区二区三区 | 久久www免费人成人片 | 国产成人综合色在线观看网站 | 久久午夜无码鲁丝片秋霞 | 搡女人真爽免费视频大全 | 国产免费无码一区二区视频 | 天堂а√在线地址中文在线 | 色综合久久久无码中文字幕 | 青青草原综合久久大伊人精品 | 日本在线高清不卡免费播放 | 在线播放免费人成毛片乱码 | 精品无码成人片一区二区98 | 啦啦啦www在线观看免费视频 | 久久久久99精品成人片 | 国产一区二区三区日韩精品 | 性做久久久久久久免费看 | 桃花色综合影院 | 成人亚洲精品久久久久软件 | 67194成是人免费无码 | 亚洲国产欧美日韩精品一区二区三区 | 天堂在线观看www | 好屌草这里只有精品 | 国产乱人偷精品人妻a片 | 无遮无挡爽爽免费视频 | 国产极品美女高潮无套在线观看 | 18精品久久久无码午夜福利 | 99在线 | 亚洲 | 蜜臀av无码人妻精品 | 高潮毛片无遮挡高清免费 | 欧美成人午夜精品久久久 | 成人欧美一区二区三区黑人 | 一本色道久久综合亚洲精品不卡 | 自拍偷自拍亚洲精品被多人伦好爽 | 98国产精品综合一区二区三区 | 成人免费视频视频在线观看 免费 | 激情人妻另类人妻伦 | 色一情一乱一伦一区二区三欧美 | av在线亚洲欧洲日产一区二区 | 国产一区二区三区日韩精品 | 亚洲 欧美 激情 小说 另类 | 国产无套粉嫩白浆在线 | 成熟女人特级毛片www免费 | 亚洲熟女一区二区三区 | 精品无码一区二区三区爱欲 | 国产真人无遮挡作爱免费视频 | 麻豆国产人妻欲求不满 | 无码任你躁久久久久久久 | 国产福利视频一区二区 | 天堂亚洲2017在线观看 | 久久 国产 尿 小便 嘘嘘 | 欧洲欧美人成视频在线 | 两性色午夜免费视频 | 国产高清av在线播放 | 中文精品久久久久人妻不卡 | 人人妻人人澡人人爽欧美一区九九 | 亚洲乱码中文字幕在线 | 国产色在线 | 国产 | 日韩欧美成人免费观看 | 婷婷色婷婷开心五月四房播播 | 蜜桃无码一区二区三区 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 在线精品亚洲一区二区 | 麻豆果冻传媒2021精品传媒一区下载 | 久久久精品国产sm最大网站 | 给我免费的视频在线观看 | 天堂在线观看www | 精品成人av一区二区三区 | 久久人人爽人人爽人人片av高清 | 俺去俺来也在线www色官网 | 亚欧洲精品在线视频免费观看 | 少妇被粗大的猛进出69影院 | 暴力强奷在线播放无码 | 国产99久久精品一区二区 | 久久午夜无码鲁丝片秋霞 | 51国偷自产一区二区三区 | 国产小呦泬泬99精品 | 波多野结衣av在线观看 | 无码国产乱人伦偷精品视频 | 成年美女黄网站色大免费视频 | 99久久精品无码一区二区毛片 | 国产xxx69麻豆国语对白 | 色一情一乱一伦一区二区三欧美 | 2019nv天堂香蕉在线观看 | 99国产精品白浆在线观看免费 | 天天综合网天天综合色 | 亚洲国产精品一区二区美利坚 | 午夜嘿嘿嘿影院 | 亚洲va欧美va天堂v国产综合 | 亚洲春色在线视频 | 国产午夜无码视频在线观看 | 5858s亚洲色大成网站www | 亚洲自偷自拍另类第1页 | 日韩少妇内射免费播放 | 国产福利视频一区二区 | 国产两女互慰高潮视频在线观看 | 精品人妻av区 | 日本熟妇乱子伦xxxx | 久久综合九色综合欧美狠狠 | 俄罗斯老熟妇色xxxx | 国产精品二区一区二区aⅴ污介绍 | 国产艳妇av在线观看果冻传媒 | 亚洲欧美色中文字幕在线 | 国产片av国语在线观看 | 久久精品人人做人人综合 | 午夜精品久久久久久久 | 国产97人人超碰caoprom | 131美女爱做视频 | 999久久久国产精品消防器材 | 久久精品成人欧美大片 | 欧美日韩一区二区免费视频 | 亚洲国产精品成人久久蜜臀 | 免费无码av一区二区 | 亚洲欧洲日本综合aⅴ在线 | 小sao货水好多真紧h无码视频 | 国产成人综合色在线观看网站 | 亚洲精品国产精品乱码不卡 | 欧美国产亚洲日韩在线二区 | √8天堂资源地址中文在线 | 亚洲a无码综合a国产av中文 | 国产区女主播在线观看 | 99视频精品全部免费免费观看 | 东京一本一道一二三区 | 夜夜高潮次次欢爽av女 | 国产精品无套呻吟在线 | 女人被男人躁得好爽免费视频 | 精品少妇爆乳无码av无码专区 | 动漫av一区二区在线观看 | 亚洲精品一区二区三区大桥未久 | 图片小说视频一区二区 | 国产电影无码午夜在线播放 | 一本加勒比波多野结衣 | 欧美阿v高清资源不卡在线播放 | 亚洲色无码一区二区三区 | 精品无码成人片一区二区98 | 麻豆av传媒蜜桃天美传媒 | 久久久精品人妻久久影视 | 东京一本一道一二三区 | 玩弄人妻少妇500系列视频 | 高潮毛片无遮挡高清免费 | 日韩人妻系列无码专区 | 国产精品毛片一区二区 | 高清不卡一区二区三区 | 亚洲国产精品久久久久久 | 一二三四在线观看免费视频 | 中文字幕久久久久人妻 | 人人妻在人人 | 成人影院yy111111在线观看 | 76少妇精品导航 | 亚洲 欧美 激情 小说 另类 | 欧美高清在线精品一区 | 国产偷自视频区视频 | 一本久道高清无码视频 | 成人三级无码视频在线观看 | 少妇性俱乐部纵欲狂欢电影 | 国产两女互慰高潮视频在线观看 | 日本护士xxxxhd少妇 | 青草青草久热国产精品 | 在线播放免费人成毛片乱码 | 国产一区二区三区四区五区加勒比 | 在线播放亚洲第一字幕 | 国产人妻精品午夜福利免费 | 精品一区二区三区无码免费视频 | 少妇高潮喷潮久久久影院 | 欧美阿v高清资源不卡在线播放 | 国产成人亚洲综合无码 | 性欧美熟妇videofreesex | 欧美日韩视频无码一区二区三 | 亚洲熟妇自偷自拍另类 | 久久久久久av无码免费看大片 | 夜先锋av资源网站 | 亚洲日韩av一区二区三区四区 | 久久精品中文闷骚内射 | av无码不卡在线观看免费 | 久久久久成人片免费观看蜜芽 | 国产精品永久免费视频 | 在线观看欧美一区二区三区 | 午夜精品一区二区三区在线观看 | 久在线观看福利视频 | 亚洲精品国产精品乱码不卡 | 女人被男人爽到呻吟的视频 | 蜜桃臀无码内射一区二区三区 | 亚洲爆乳无码专区 | 国产激情无码一区二区 | 牲交欧美兽交欧美 | 无码av中文字幕免费放 | 2020最新国产自产精品 | 中文字幕无码人妻少妇免费 | 55夜色66夜色国产精品视频 | 少妇高潮喷潮久久久影院 | 无码国模国产在线观看 | 18黄暴禁片在线观看 | 中文字幕 人妻熟女 | 国产精品久久久一区二区三区 | 国产办公室秘书无码精品99 | 亚洲自偷精品视频自拍 | 精品欧洲av无码一区二区三区 | 久9re热视频这里只有精品 | 无码av岛国片在线播放 | 小泽玛莉亚一区二区视频在线 | 中文字幕精品av一区二区五区 | 欧美人与善在线com | 精品人妻av区 | 无码人妻久久一区二区三区不卡 | 俄罗斯老熟妇色xxxx | 亚洲成av人影院在线观看 | 亚洲精品美女久久久久久久 | 国产成人综合色在线观看网站 | 午夜熟女插插xx免费视频 | 又紧又大又爽精品一区二区 | 丝袜美腿亚洲一区二区 | 少妇激情av一区二区 | 国产亚洲精品精品国产亚洲综合 | 国产猛烈高潮尖叫视频免费 | 欧美猛少妇色xxxxx | 一区二区三区乱码在线 | 欧洲 | 国产精品亚洲lv粉色 | 99久久婷婷国产综合精品青草免费 | 国产成人无码专区 | 欧美日韩精品 | 精品人人妻人人澡人人爽人人 | 纯爱无遮挡h肉动漫在线播放 | 超碰97人人射妻 | 欧美自拍另类欧美综合图片区 | 狠狠亚洲超碰狼人久久 | 中文字幕人妻无码一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 波多野42部无码喷潮在线 | 国产后入清纯学生妹 | 中文无码精品a∨在线观看不卡 | 俺去俺来也www色官网 | 成年美女黄网站色大免费视频 | 狠狠色丁香久久婷婷综合五月 | 久久zyz资源站无码中文动漫 | 国语自产偷拍精品视频偷 | 亚洲成av人片在线观看无码不卡 | 亚洲乱码日产精品bd | 亚洲精品www久久久 | 黑人巨大精品欧美一区二区 | 青草青草久热国产精品 | 色狠狠av一区二区三区 | 乱人伦中文视频在线观看 | 国内精品人妻无码久久久影院 | 国产av剧情md精品麻豆 | 国产一精品一av一免费 | 色五月五月丁香亚洲综合网 | 国产精品久久久久久久9999 | 亚洲精品欧美二区三区中文字幕 | 国产特级毛片aaaaaaa高清 | 亚洲成色在线综合网站 | 亚拍精品一区二区三区探花 | 天干天干啦夜天干天2017 | 中文字幕人妻无码一区二区三区 | 超碰97人人射妻 | 精品人妻人人做人人爽夜夜爽 | www成人国产高清内射 | 荡女精品导航 | 国产精品沙发午睡系列 | 一本色道久久综合亚洲精品不卡 | 波多野结衣乳巨码无在线观看 | 国产亲子乱弄免费视频 | 一本久道久久综合婷婷五月 | 欧美人与禽猛交狂配 | 欧美日韩一区二区综合 | 中文无码成人免费视频在线观看 | 丰满人妻一区二区三区免费视频 | 欧洲美熟女乱又伦 | 国产成人精品必看 | 77777熟女视频在线观看 а天堂中文在线官网 | 一二三四社区在线中文视频 | 丝袜足控一区二区三区 | 内射后入在线观看一区 | 亚洲中文字幕久久无码 | 成人欧美一区二区三区黑人免费 | 强奷人妻日本中文字幕 | 国产无遮挡吃胸膜奶免费看 | 久久无码中文字幕免费影院蜜桃 | 亚洲成av人综合在线观看 | 成在人线av无码免费 | 久9re热视频这里只有精品 | 午夜无码人妻av大片色欲 | 未满小14洗澡无码视频网站 | 四十如虎的丰满熟妇啪啪 | 国产农村妇女高潮大叫 | 蜜桃av抽搐高潮一区二区 | 亚洲国产精华液网站w | 天堂亚洲2017在线观看 | 理论片87福利理论电影 | 亚洲熟熟妇xxxx | 奇米影视7777久久精品 | 久久99精品国产.久久久久 | 色老头在线一区二区三区 | 大肉大捧一进一出好爽视频 | 日日摸天天摸爽爽狠狠97 | 久久久婷婷五月亚洲97号色 | 亚洲成av人在线观看网址 | 免费无码一区二区三区蜜桃大 | 福利一区二区三区视频在线观看 | 久久精品人人做人人综合试看 | 久久久久久久久蜜桃 | 亚洲国产午夜精品理论片 | 亚洲色偷偷偷综合网 | 国产精品视频免费播放 | 最近的中文字幕在线看视频 | 国产亚洲精品久久久久久久 | 成人免费视频一区二区 | 中国女人内谢69xxxx | 亚洲高清偷拍一区二区三区 | 乱人伦人妻中文字幕无码 | 欧美性黑人极品hd | 国产午夜视频在线观看 | 中文字幕日韩精品一区二区三区 | 撕开奶罩揉吮奶头视频 | 国产人妻精品一区二区三区不卡 | 熟妇女人妻丰满少妇中文字幕 | 日韩人妻无码一区二区三区久久99 | 精品欧美一区二区三区久久久 | 九九综合va免费看 | 亚洲一区二区三区香蕉 | 大肉大捧一进一出好爽视频 | 精品国产av色一区二区深夜久久 | 青青青手机频在线观看 | 任你躁在线精品免费 | 欧美激情综合亚洲一二区 | 18无码粉嫩小泬无套在线观看 | 中文字幕无码免费久久99 | 久久午夜夜伦鲁鲁片无码免费 | 久久国产精品_国产精品 | 丝袜足控一区二区三区 | 最近的中文字幕在线看视频 | 日日麻批免费40分钟无码 | 六十路熟妇乱子伦 | 熟女少妇人妻中文字幕 | 天堂无码人妻精品一区二区三区 | 牲欲强的熟妇农村老妇女视频 | 国产人妻人伦精品1国产丝袜 | 亚洲一区二区三区播放 | 亚洲国产欧美在线成人 | 少妇无套内谢久久久久 | 男女超爽视频免费播放 | 成人亚洲精品久久久久软件 | 中文字幕日韩精品一区二区三区 | 亚洲欧美精品伊人久久 | 国产精品无码成人午夜电影 | 正在播放老肥熟妇露脸 | 国产国语老龄妇女a片 | 中文字幕人妻丝袜二区 | 欧美一区二区三区 | 亚洲精品综合五月久久小说 | 欧美日韩一区二区三区自拍 | 亚洲国产精品久久久久久 | 双乳奶水饱满少妇呻吟 | 天天综合网天天综合色 | 欧美熟妇另类久久久久久多毛 | 国内揄拍国内精品人妻 | 亚洲一区二区三区在线观看网站 | 久久综合给久久狠狠97色 | 福利一区二区三区视频在线观看 | а√资源新版在线天堂 | 好爽又高潮了毛片免费下载 | 男女作爱免费网站 | 亚洲成a人片在线观看无码3d | 精品国产精品久久一区免费式 | 久久久无码中文字幕久... | 国产精品久久国产三级国 | 人人妻人人澡人人爽人人精品浪潮 | 午夜无码人妻av大片色欲 | 娇妻被黑人粗大高潮白浆 | 青春草在线视频免费观看 | 日本一卡2卡3卡四卡精品网站 | 欧美日韩一区二区免费视频 | 熟妇人妻中文av无码 | 无码国产乱人伦偷精品视频 | 秋霞特色aa大片 | 中文字幕无线码免费人妻 | 国产人妖乱国产精品人妖 | 性欧美熟妇videofreesex | 亚洲码国产精品高潮在线 | 最近中文2019字幕第二页 | 亚洲欧美日韩国产精品一区二区 | 久久这里只有精品视频9 | 色综合久久中文娱乐网 | 亚洲精品无码国产 | 成人无码精品一区二区三区 | 亚洲娇小与黑人巨大交 | 久久综合香蕉国产蜜臀av | 麻豆精品国产精华精华液好用吗 | 亚洲一区二区三区无码久久 | 久久久久久亚洲精品a片成人 | 国产精品亚洲专区无码不卡 | 真人与拘做受免费视频 | 天下第一社区视频www日本 | 国产热a欧美热a在线视频 | 久久天天躁狠狠躁夜夜免费观看 | 东京一本一道一二三区 | 天天躁夜夜躁狠狠是什么心态 | 国内少妇偷人精品视频 | 在线天堂新版最新版在线8 | 国产熟女一区二区三区四区五区 | 国产精品久久福利网站 | 少女韩国电视剧在线观看完整 | 精品 日韩 国产 欧美 视频 | 精品无码国产自产拍在线观看蜜 | 国产精品亚洲五月天高清 | 国产精品久久福利网站 | 久久久婷婷五月亚洲97号色 | 99久久精品国产一区二区蜜芽 | 2020久久香蕉国产线看观看 | 扒开双腿吃奶呻吟做受视频 | 亚洲精品中文字幕久久久久 | 国产精品视频免费播放 | 色一情一乱一伦一视频免费看 | 99精品视频在线观看免费 | 少女韩国电视剧在线观看完整 | 亚洲国产精品无码一区二区三区 | 男人扒开女人内裤强吻桶进去 | 少妇激情av一区二区 | 亚洲国产精品久久人人爱 | 精品久久8x国产免费观看 | 亚洲一区二区三区香蕉 | 欧美自拍另类欧美综合图片区 | 国产成人午夜福利在线播放 | 精品国产乱码久久久久乱码 | 欧美国产亚洲日韩在线二区 | 久9re热视频这里只有精品 | 国内精品人妻无码久久久影院 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 久久久久se色偷偷亚洲精品av | 男女下面进入的视频免费午夜 | 国内精品人妻无码久久久影院蜜桃 | 久久精品女人的天堂av | 日本丰满熟妇videos | 野狼第一精品社区 | 精品乱子伦一区二区三区 | 女人被爽到呻吟gif动态图视看 | 精品久久久久久亚洲精品 | 无码福利日韩神码福利片 | 无码帝国www无码专区色综合 | 无码国产色欲xxxxx视频 | 亚洲无人区午夜福利码高清完整版 | 欧美一区二区三区视频在线观看 | 久久久精品456亚洲影院 | 国产无遮挡又黄又爽免费视频 | 东京一本一道一二三区 | 国产无套粉嫩白浆在线 | 久久久久久久久蜜桃 | 午夜精品久久久久久久久 | 97久久国产亚洲精品超碰热 | 乱人伦中文视频在线观看 | 亚洲s色大片在线观看 | 午夜男女很黄的视频 | 国产真实乱对白精彩久久 | 欧美激情一区二区三区成人 | 亚洲成熟女人毛毛耸耸多 | 黑人巨大精品欧美黑寡妇 | 国产农村妇女高潮大叫 | 国精产品一品二品国精品69xx | 亚洲熟女一区二区三区 | 国产九九九九九九九a片 | 两性色午夜免费视频 | 高清不卡一区二区三区 | 一个人看的www免费视频在线观看 | 男女超爽视频免费播放 | 久久99精品国产.久久久久 | 曰韩少妇内射免费播放 | 亚洲无人区午夜福利码高清完整版 | 暴力强奷在线播放无码 | 好爽又高潮了毛片免费下载 | 黑人巨大精品欧美一区二区 | 九九在线中文字幕无码 | 国产午夜精品一区二区三区嫩草 | 又色又爽又黄的美女裸体网站 | 爽爽影院免费观看 | 激情综合激情五月俺也去 | 日本xxxx色视频在线观看免费 | 亚洲日本一区二区三区在线 | 欧美黑人性暴力猛交喷水 | 国产成人一区二区三区别 | 初尝人妻少妇中文字幕 | 久久人人爽人人爽人人片av高清 | 久久综合香蕉国产蜜臀av | 国产精品久久久久影院嫩草 | aⅴ亚洲 日韩 色 图网站 播放 | 强开小婷嫩苞又嫩又紧视频 | 一本色道久久综合亚洲精品不卡 | 女人被男人躁得好爽免费视频 | 丝袜足控一区二区三区 | 九九综合va免费看 | 欧美zoozzooz性欧美 | 色综合久久网 | 国产精品免费大片 | 中文无码精品a∨在线观看不卡 | 日韩无码专区 | 中文字幕无码免费久久9一区9 | 精品成人av一区二区三区 | 亚洲人成网站在线播放942 | 奇米影视7777久久精品 | 亚洲最大成人网站 | 日日躁夜夜躁狠狠躁 | 欧美午夜特黄aaaaaa片 | 99久久无码一区人妻 | 99久久人妻精品免费一区 | 欧美一区二区三区视频在线观看 | 黑人粗大猛烈进出高潮视频 | 日韩欧美中文字幕公布 | 国产日产欧产精品精品app | 青青青爽视频在线观看 | 国产精品理论片在线观看 | 蜜桃视频插满18在线观看 | 欧美性生交活xxxxxdddd | 人妻熟女一区 | 俺去俺来也www色官网 | 亚洲色欲久久久综合网东京热 | 婷婷五月综合缴情在线视频 | 国产午夜无码精品免费看 | v一区无码内射国产 | 国产区女主播在线观看 | 国产激情艳情在线看视频 | 久久精品丝袜高跟鞋 | 天天av天天av天天透 | 亚洲精品国产精品乱码不卡 | 成 人 免费观看网站 | 图片小说视频一区二区 | 免费观看的无遮挡av | 偷窥村妇洗澡毛毛多 | 色情久久久av熟女人妻网站 | 性欧美大战久久久久久久 | 人妻有码中文字幕在线 | 亚洲精品一区三区三区在线观看 | 蜜桃视频插满18在线观看 | 久久综合香蕉国产蜜臀av | 99er热精品视频 | 亚洲自偷自偷在线制服 | 蜜桃视频韩日免费播放 | 粉嫩少妇内射浓精videos | 亚洲一区二区三区在线观看网站 | 97夜夜澡人人爽人人喊中国片 | 伊在人天堂亚洲香蕉精品区 | 精品国产国产综合精品 | 久久久久免费精品国产 | 老太婆性杂交欧美肥老太 | 欧美亚洲国产一区二区三区 | 久久亚洲中文字幕无码 | 日韩精品一区二区av在线 | 欧美日本日韩 | 人人爽人人澡人人高潮 | 天下第一社区视频www日本 | 亚洲熟妇色xxxxx欧美老妇y | 青青草原综合久久大伊人精品 | 欧美老妇交乱视频在线观看 | 国产情侣作爱视频免费观看 | 综合网日日天干夜夜久久 | 福利一区二区三区视频在线观看 | 亚洲最大成人网站 | 国产精品办公室沙发 | 欧美 丝袜 自拍 制服 另类 | 成人毛片一区二区 | 无码精品国产va在线观看dvd | 国产高清不卡无码视频 | 亚洲综合另类小说色区 | 又色又爽又黄的美女裸体网站 | 久久久久成人精品免费播放动漫 | 樱花草在线社区www | 思思久久99热只有频精品66 | 中文字幕无码日韩专区 | √8天堂资源地址中文在线 | 天干天干啦夜天干天2017 | √8天堂资源地址中文在线 | 奇米影视888欧美在线观看 | 大肉大捧一进一出视频出来呀 | 久久久av男人的天堂 | 乱中年女人伦av三区 | 亚洲啪av永久无码精品放毛片 | 久热国产vs视频在线观看 | 国产人妻精品午夜福利免费 | 国产亚洲人成在线播放 | 男女爱爱好爽视频免费看 | 国产婷婷色一区二区三区在线 | 久激情内射婷内射蜜桃人妖 | 最近中文2019字幕第二页 | 中文毛片无遮挡高清免费 | 精品乱码久久久久久久 | 波多野结衣av在线观看 | 乱码午夜-极国产极内射 | 人人妻人人澡人人爽欧美一区 | 国产亚洲视频中文字幕97精品 | 日本精品高清一区二区 | 国产明星裸体无码xxxx视频 | 网友自拍区视频精品 | 无码国模国产在线观看 | 激情五月综合色婷婷一区二区 | 玩弄中年熟妇正在播放 | 久久人人爽人人爽人人片ⅴ | 亚洲呦女专区 | 永久免费精品精品永久-夜色 | 国产9 9在线 | 中文 | 欧美刺激性大交 | 日韩精品无码一本二本三本色 | 最新国产乱人伦偷精品免费网站 | 欧美国产日韩亚洲中文 | 久久久成人毛片无码 | 亚洲另类伦春色综合小说 | 成人免费视频一区二区 | 国产9 9在线 | 中文 | 无码av最新清无码专区吞精 | 成人无码精品一区二区三区 | 高潮毛片无遮挡高清免费 | 午夜精品久久久内射近拍高清 | 婷婷五月综合缴情在线视频 | 国产精品久久久久7777 | 少妇无码吹潮 | 成年女人永久免费看片 | 午夜福利试看120秒体验区 | 国产精品a成v人在线播放 | 色综合视频一区二区三区 | 亚洲另类伦春色综合小说 | 在线亚洲高清揄拍自拍一品区 | √天堂中文官网8在线 | 大肉大捧一进一出好爽视频 | 亚洲国产av精品一区二区蜜芽 | 国产高清av在线播放 | 免费人成在线观看网站 | 成年美女黄网站色大免费视频 | 精品一区二区不卡无码av | 亚洲国产精华液网站w | 西西人体www44rt大胆高清 | 免费观看的无遮挡av | 内射爽无广熟女亚洲 | 中文字幕乱码人妻无码久久 | 荫蒂被男人添的好舒服爽免费视频 | 97精品人妻一区二区三区香蕉 | 丝袜足控一区二区三区 | 激情国产av做激情国产爱 | 丁香花在线影院观看在线播放 | 九九久久精品国产免费看小说 | 青春草在线视频免费观看 | 精品熟女少妇av免费观看 | 久久久久久久女国产乱让韩 | 蜜桃av抽搐高潮一区二区 | 久久久国产精品无码免费专区 | 成人亚洲精品久久久久软件 | 婷婷五月综合缴情在线视频 | 成人无码精品一区二区三区 | 亚洲精品一区二区三区大桥未久 | 国内精品人妻无码久久久影院蜜桃 | 欧美熟妇另类久久久久久多毛 | 俺去俺来也www色官网 | 中文无码伦av中文字幕 | 国产婷婷色一区二区三区在线 | 欧美人妻一区二区三区 | 久久综合香蕉国产蜜臀av | 日产精品高潮呻吟av久久 | 国产人妻精品午夜福利免费 | 欧美老人巨大xxxx做受 | 欧洲极品少妇 | 久久国产劲爆∧v内射 | 天天做天天爱天天爽综合网 | av小次郎收藏 | 图片小说视频一区二区 | 亚洲人成网站在线播放942 | 色一情一乱一伦一区二区三欧美 | 亚洲色无码一区二区三区 | 久久久久久久久蜜桃 | 亚洲欧美综合区丁香五月小说 | 日本丰满护士爆乳xxxx | 久久精品国产99精品亚洲 | 西西人体www44rt大胆高清 | 色综合久久久无码中文字幕 | 亚洲一区二区三区无码久久 | 九九久久精品国产免费看小说 | 日日鲁鲁鲁夜夜爽爽狠狠 | 亚洲日本va午夜在线电影 | 嫩b人妻精品一区二区三区 | 99久久无码一区人妻 | 377p欧洲日本亚洲大胆 | 熟妇激情内射com | 国精产品一区二区三区 | 国产免费观看黄av片 | 国产情侣作爱视频免费观看 | 九月婷婷人人澡人人添人人爽 | 欧美精品免费观看二区 | 成年美女黄网站色大免费视频 | 精品无码国产自产拍在线观看蜜 | 无码人妻出轨黑人中文字幕 | 午夜精品久久久久久久 | 东京热一精品无码av | 成人免费视频一区二区 | 久久久久国色av免费观看性色 | 自拍偷自拍亚洲精品10p | 强辱丰满人妻hd中文字幕 | 青青草原综合久久大伊人精品 | 亚洲成a人片在线观看日本 | 国产精品内射视频免费 | 中文久久乱码一区二区 | 无码国产激情在线观看 | 国产精品久久久久久久9999 | 亚无码乱人伦一区二区 | 狂野欧美性猛xxxx乱大交 | 人妻有码中文字幕在线 | 沈阳熟女露脸对白视频 | 亚洲人成影院在线观看 | 性开放的女人aaa片 | 99久久久无码国产精品免费 | 亚洲va欧美va天堂v国产综合 | 欧美成人高清在线播放 | 国产一区二区三区精品视频 | 日韩欧美成人免费观看 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲午夜福利在线观看 | 国产精品久免费的黄网站 | 欧美性猛交xxxx富婆 | 少妇性荡欲午夜性开放视频剧场 | 亚洲精品久久久久久久久久久 | 无码av中文字幕免费放 | 丰满少妇熟乱xxxxx视频 | 无码人妻精品一区二区三区不卡 | 未满成年国产在线观看 | 免费观看的无遮挡av | 国产精品久久久久无码av色戒 | 亚洲人成无码网www | 亚洲人交乣女bbw | 免费无码一区二区三区蜜桃大 | 在线观看国产一区二区三区 | 国产熟妇另类久久久久 | 巨爆乳无码视频在线观看 | 一区二区传媒有限公司 | 一本久久a久久精品vr综合 | 久久伊人色av天堂九九小黄鸭 | 鲁大师影院在线观看 | 一本久道久久综合婷婷五月 | 国精品人妻无码一区二区三区蜜柚 | а√天堂www在线天堂小说 | 99久久精品日本一区二区免费 | 国产精品福利视频导航 | 丰满诱人的人妻3 | 樱花草在线社区www | 国产成人无码午夜视频在线观看 | 人人妻人人澡人人爽欧美一区 | 九九热爱视频精品 | 国产欧美熟妇另类久久久 | 日本一区二区更新不卡 | 免费国产成人高清在线观看网站 | 青青久在线视频免费观看 | av无码电影一区二区三区 | 国产内射老熟女aaaa | 欧美放荡的少妇 | √天堂中文官网8在线 | 欧美色就是色 | 亚洲精品国偷拍自产在线麻豆 | 久久99国产综合精品 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 狠狠亚洲超碰狼人久久 | 国产高潮视频在线观看 | 久久视频在线观看精品 | 51国偷自产一区二区三区 | 无码人妻久久一区二区三区不卡 | 丰满人妻精品国产99aⅴ | 亚洲精品午夜无码电影网 | 永久免费观看美女裸体的网站 | 日本一卡二卡不卡视频查询 | 色狠狠av一区二区三区 | 4hu四虎永久在线观看 | 久久午夜夜伦鲁鲁片无码免费 | 国产精品久久久久久亚洲毛片 | 国产精品鲁鲁鲁 | 久久熟妇人妻午夜寂寞影院 | 亚洲va欧美va天堂v国产综合 | 丰满人妻精品国产99aⅴ | 日韩少妇内射免费播放 | 激情内射亚州一区二区三区爱妻 | 久久综合狠狠综合久久综合88 | 久久五月精品中文字幕 | 国精产品一区二区三区 | 日韩精品无码一区二区中文字幕 | 内射老妇bbwx0c0ck | 国产精品爱久久久久久久 | 国产肉丝袜在线观看 | 77777熟女视频在线观看 а天堂中文在线官网 | 美女张开腿让人桶 | 欧美激情一区二区三区成人 | 十八禁视频网站在线观看 | 天堂一区人妻无码 | 日本精品人妻无码77777 天堂一区人妻无码 | 午夜成人1000部免费视频 | 亚洲精品午夜无码电影网 | 久久久久久久久蜜桃 | 国产麻豆精品精东影业av网站 | 蜜桃视频插满18在线观看 | 初尝人妻少妇中文字幕 | 成人试看120秒体验区 | 亚洲国产高清在线观看视频 | 亚洲の无码国产の无码步美 | 高潮毛片无遮挡高清免费 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产午夜亚洲精品不卡 | 少妇高潮一区二区三区99 | 国产成人无码一二三区视频 | 久久久国产精品无码免费专区 | www国产精品内射老师 | 日日橹狠狠爱欧美视频 | 久久久久国色av免费观看性色 | 无码纯肉视频在线观看 | а√天堂www在线天堂小说 | 午夜精品一区二区三区在线观看 | 国产极品美女高潮无套在线观看 | 伊人久久大香线蕉av一区二区 | 日本大乳高潮视频在线观看 | 东京热无码av男人的天堂 | 亚洲一区二区观看播放 | 中文亚洲成a人片在线观看 | 中文字幕日韩精品一区二区三区 | 久久人人爽人人爽人人片ⅴ | 在线看片无码永久免费视频 | 国产在线aaa片一区二区99 | 国产成人精品久久亚洲高清不卡 | 国产精品亚洲一区二区三区喷水 | 国产亚洲精品久久久ai换 | 久久午夜无码鲁丝片午夜精品 | 国产女主播喷水视频在线观看 | 久久精品国产一区二区三区肥胖 | 99精品无人区乱码1区2区3区 | 欧美熟妇另类久久久久久不卡 | 精品欧美一区二区三区久久久 | 久久国产自偷自偷免费一区调 | 日韩av无码一区二区三区不卡 | 99久久久无码国产aaa精品 | 国产午夜视频在线观看 | 97久久精品无码一区二区 | 国内少妇偷人精品视频免费 | 成人免费视频视频在线观看 免费 | 极品尤物被啪到呻吟喷水 | 色情久久久av熟女人妻网站 | 巨爆乳无码视频在线观看 | 98国产精品综合一区二区三区 | 亚洲国产欧美在线成人 | 夜夜夜高潮夜夜爽夜夜爰爰 | 免费乱码人妻系列无码专区 | 亚洲七七久久桃花影院 | 国产av一区二区精品久久凹凸 | 亚洲国产精品美女久久久久 | 精品欧洲av无码一区二区三区 | 沈阳熟女露脸对白视频 | 亚洲日本va午夜在线电影 | 国产免费久久精品国产传媒 | 国产成人人人97超碰超爽8 | 国产在线精品一区二区三区直播 | 人妻天天爽夜夜爽一区二区 | 99精品国产综合久久久久五月天 | 97人妻精品一区二区三区 | 国产明星裸体无码xxxx视频 | 国产av人人夜夜澡人人爽麻豆 | 综合人妻久久一区二区精品 | 人妻互换免费中文字幕 | 久久99热只有频精品8 | 2019nv天堂香蕉在线观看 | 欧美人与牲动交xxxx | 成 人 网 站国产免费观看 | 最新版天堂资源中文官网 | 夫妻免费无码v看片 | 88国产精品欧美一区二区三区 | 99久久精品无码一区二区毛片 | 精品一区二区三区波多野结衣 | 欧美精品免费观看二区 | 国产高清不卡无码视频 | 国内精品久久久久久中文字幕 | 麻豆国产丝袜白领秘书在线观看 | 超碰97人人做人人爱少妇 | 无码人妻av免费一区二区三区 | 精品无码一区二区三区的天堂 | 精品一区二区不卡无码av | 成人精品视频一区二区 | 日本一区二区更新不卡 | 日本xxxx色视频在线观看免费 | 久久综合香蕉国产蜜臀av | 色妞www精品免费视频 | 久久久久久亚洲精品a片成人 | 中文字幕人妻丝袜二区 | 亚洲色大成网站www国产 | 国产精品久久久久9999小说 | 亚洲人成影院在线无码按摩店 | 国产欧美精品一区二区三区 | 亚洲国产欧美日韩精品一区二区三区 | 精品午夜福利在线观看 | 精品夜夜澡人妻无码av蜜桃 | 2019nv天堂香蕉在线观看 | 波多野结衣av一区二区全免费观看 | 中文字幕亚洲情99在线 | 亚洲小说图区综合在线 | 无码一区二区三区在线 | 欧美黑人巨大xxxxx | 久久国产36精品色熟妇 | 国产精品美女久久久网av | 99久久精品日本一区二区免费 | 51国偷自产一区二区三区 | 亚洲第一无码av无码专区 | 亚洲国产综合无码一区 | 人妻互换免费中文字幕 | 岛国片人妻三上悠亚 | 精品国产一区二区三区av 性色 | 永久免费精品精品永久-夜色 | 99国产精品白浆在线观看免费 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 精品无人国产偷自产在线 | 无码午夜成人1000部免费视频 | 一个人免费观看的www视频 | 婷婷六月久久综合丁香 | 无码人妻av免费一区二区三区 | 澳门永久av免费网站 | 7777奇米四色成人眼影 | 亚洲娇小与黑人巨大交 | 无码午夜成人1000部免费视频 | 久久综合狠狠综合久久综合88 | 国产特级毛片aaaaaaa高清 | 国产婷婷色一区二区三区在线 | 国产免费久久精品国产传媒 | 欧美国产日产一区二区 | 久久久精品国产sm最大网站 | 女人和拘做爰正片视频 | 亚洲天堂2017无码中文 | 国产精品亚洲专区无码不卡 | 午夜精品久久久内射近拍高清 | 日日橹狠狠爱欧美视频 | 国产97色在线 | 免 | 99久久久无码国产精品免费 | 精品偷自拍另类在线观看 | 欧美性生交活xxxxxdddd | 高清国产亚洲精品自在久久 | 亚洲日韩av片在线观看 | 欧美午夜特黄aaaaaa片 | 亚洲国产日韩a在线播放 | 东京热男人av天堂 | 亚洲日韩中文字幕在线播放 | 全黄性性激高免费视频 | 国产一区二区不卡老阿姨 | 久久人人爽人人爽人人片ⅴ | 日产精品高潮呻吟av久久 | 99久久人妻精品免费一区 | 久久久中文久久久无码 | 亚洲欧美中文字幕5发布 | 亚洲阿v天堂在线 | 亚洲日韩av一区二区三区中文 | 精品成人av一区二区三区 | 日本在线高清不卡免费播放 | 377p欧洲日本亚洲大胆 | 蜜桃无码一区二区三区 | 性生交片免费无码看人 | 免费观看又污又黄的网站 | 精品无码国产一区二区三区av | 无码av免费一区二区三区试看 | 亚洲中文字幕在线无码一区二区 | 麻花豆传媒剧国产免费mv在线 | 精品国产成人一区二区三区 | 国产在线无码精品电影网 | 18黄暴禁片在线观看 | 美女极度色诱视频国产 | 国产精品欧美成人 | 老子影院午夜伦不卡 | 免费男性肉肉影院 | yw尤物av无码国产在线观看 | 国产精品免费大片 | 国产午夜无码视频在线观看 | 久9re热视频这里只有精品 | 内射白嫩少妇超碰 | 国产精品理论片在线观看 | 精品久久久久久人妻无码中文字幕 | 久久综合九色综合欧美狠狠 | 国产麻豆精品一区二区三区v视界 | 人人澡人人妻人人爽人人蜜桃 | 国产精华av午夜在线观看 | 搡女人真爽免费视频大全 | 亚拍精品一区二区三区探花 | 人人妻人人澡人人爽人人精品浪潮 | 人妻少妇被猛烈进入中文字幕 | 宝宝好涨水快流出来免费视频 | 性史性农村dvd毛片 | 人妻少妇精品无码专区二区 | 偷窥日本少妇撒尿chinese | 久久99精品国产麻豆蜜芽 | 亚洲自偷自偷在线制服 | 中文字幕精品av一区二区五区 | 一个人免费观看的www视频 | 中文字幕无码免费久久9一区9 | 大地资源中文第3页 | 精品无人区无码乱码毛片国产 | 日日麻批免费40分钟无码 | 亚洲中文字幕无码中文字在线 | 久久综合九色综合97网 | 3d动漫精品啪啪一区二区中 | 久久综合九色综合欧美狠狠 | 国产精品久久久久久亚洲影视内衣 | 中文精品久久久久人妻不卡 | 国产精品久久久av久久久 | 久久精品女人天堂av免费观看 | 荫蒂被男人添的好舒服爽免费视频 | 无套内谢的新婚少妇国语播放 | 无码福利日韩神码福利片 | 亚洲国产高清在线观看视频 | 亚洲色欲色欲天天天www | 国产又爽又黄又刺激的视频 | 国产内射爽爽大片视频社区在线 | 亚洲成av人片在线观看无码不卡 | 成人一在线视频日韩国产 | 小泽玛莉亚一区二区视频在线 | 美女毛片一区二区三区四区 | 大肉大捧一进一出好爽视频 | 亚洲精品一区二区三区四区五区 | 国产黄在线观看免费观看不卡 | 国内精品人妻无码久久久影院蜜桃 | 亚洲中文字幕无码一久久区 | 亚洲精品国产a久久久久久 | 日日麻批免费40分钟无码 | 精品国产青草久久久久福利 | 亚洲а∨天堂久久精品2021 | 白嫩日本少妇做爰 | 大肉大捧一进一出视频出来呀 | 十八禁真人啪啪免费网站 | 亚洲欧美日韩成人高清在线一区 | 99精品视频在线观看免费 | 又色又爽又黄的美女裸体网站 | 国产又粗又硬又大爽黄老大爷视 | 九月婷婷人人澡人人添人人爽 | 国产激情综合五月久久 | 4hu四虎永久在线观看 | 精品成在人线av无码免费看 | 国产xxx69麻豆国语对白 | 国产黑色丝袜在线播放 | 中国女人内谢69xxxxxa片 | 亚无码乱人伦一区二区 | 国产无遮挡吃胸膜奶免费看 | 亚洲精品中文字幕乱码 | 久久久久免费看成人影片 | 精品国产乱码久久久久乱码 | 一本久道高清无码视频 | 久久99久久99精品中文字幕 | 成人亚洲精品久久久久 | 天堂а√在线地址中文在线 | 无码人妻精品一区二区三区下载 | 丰满肥臀大屁股熟妇激情视频 | 在线天堂新版最新版在线8 | 天天躁夜夜躁狠狠是什么心态 | 中文字幕人妻无码一夲道 | 宝宝好涨水快流出来免费视频 | 无遮挡国产高潮视频免费观看 | 久久综合激激的五月天 | 精品无码国产一区二区三区av | 日韩av无码中文无码电影 | 色综合久久网 | 人人妻人人澡人人爽欧美一区九九 | 午夜精品久久久内射近拍高清 | 欧美精品一区二区精品久久 | 亚洲高清偷拍一区二区三区 | 亚洲の无码国产の无码影院 | 性色av无码免费一区二区三区 | 国产97色在线 | 免 | 丝袜美腿亚洲一区二区 | 久久成人a毛片免费观看网站 | 欧洲vodafone精品性 | 性欧美牲交在线视频 | 亚洲国产综合无码一区 | 精品夜夜澡人妻无码av蜜桃 | 亚洲一区二区三区偷拍女厕 | 亚洲中文字幕va福利 | √天堂中文官网8在线 | 亚洲日韩一区二区三区 | 久久久国产精品无码免费专区 | 欧美精品无码一区二区三区 | 午夜福利不卡在线视频 | 国产成人综合在线女婷五月99播放 | 久久国产劲爆∧v内射 | 免费无码av一区二区 | 亚洲阿v天堂在线 | 国产精品亚洲五月天高清 | 亚洲色欲色欲欲www在线 | 色欲人妻aaaaaaa无码 | 亚洲人成影院在线观看 | 乱码午夜-极国产极内射 | 国产午夜亚洲精品不卡下载 | 大地资源中文第3页 | 爽爽影院免费观看 | 国产精品对白交换视频 | 中文无码成人免费视频在线观看 | 色婷婷综合中文久久一本 | av在线亚洲欧洲日产一区二区 | 亚洲一区二区三区四区 | 国产av久久久久精东av | 四虎永久在线精品免费网址 | 亚洲中文字幕av在天堂 | 国产成人亚洲综合无码 | 午夜福利电影 | 久久久久亚洲精品中文字幕 | 成人无码精品1区2区3区免费看 | 午夜性刺激在线视频免费 | 99国产欧美久久久精品 | 一二三四社区在线中文视频 | 99久久人妻精品免费二区 | 131美女爱做视频 | 国产热a欧美热a在线视频 | 久久国产劲爆∧v内射 | 午夜成人1000部免费视频 | 久久zyz资源站无码中文动漫 | 又大又硬又爽免费视频 | 国内综合精品午夜久久资源 | 国产精品毛片一区二区 | 国产疯狂伦交大片 | 露脸叫床粗话东北少妇 | 亚洲综合另类小说色区 | 天天av天天av天天透 | 东京无码熟妇人妻av在线网址 | 成人影院yy111111在线观看 | 97精品国产97久久久久久免费 | 亚洲综合色区中文字幕 | 99er热精品视频 | 日本一本二本三区免费 | 无套内射视频囯产 | 日韩人妻少妇一区二区三区 | 免费播放一区二区三区 | 国产情侣作爱视频免费观看 | 亚洲爆乳无码专区 | 2020最新国产自产精品 | 超碰97人人做人人爱少妇 | 国产真实夫妇视频 | 亚洲va欧美va天堂v国产综合 | 免费乱码人妻系列无码专区 | 亚洲欧洲无卡二区视頻 | 国产综合久久久久鬼色 | 久久精品人妻少妇一区二区三区 | 欧美丰满老熟妇xxxxx性 | 人妻插b视频一区二区三区 | 国产肉丝袜在线观看 | 久久久久se色偷偷亚洲精品av | 国产成人综合色在线观看网站 | 欧美性生交活xxxxxdddd | 日本一本二本三区免费 | 欧美刺激性大交 | 国产成人精品久久亚洲高清不卡 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产97人人超碰caoprom | 亚洲熟悉妇女xxx妇女av | 国产精品怡红院永久免费 | 在线看片无码永久免费视频 | 国产色精品久久人妻 | 国产成人一区二区三区在线观看 | 中文字幕乱码中文乱码51精品 | 成人欧美一区二区三区黑人 | 熟妇女人妻丰满少妇中文字幕 | 小鲜肉自慰网站xnxx | 中文字幕久久久久人妻 | 久久99精品国产.久久久久 | 人人妻人人澡人人爽欧美一区九九 | 黑人粗大猛烈进出高潮视频 | 中文字幕无码免费久久9一区9 | 老头边吃奶边弄进去呻吟 | 无码毛片视频一区二区本码 | 免费人成网站视频在线观看 | 国内老熟妇对白xxxxhd | 福利一区二区三区视频在线观看 | 领导边摸边吃奶边做爽在线观看 | 老熟妇乱子伦牲交视频 | 98国产精品综合一区二区三区 | 午夜丰满少妇性开放视频 | 夫妻免费无码v看片 | 日本熟妇乱子伦xxxx | 精品欧美一区二区三区久久久 | 免费男性肉肉影院 | 国产另类ts人妖一区二区 | 国产精品va在线播放 | 又黄又爽又色的视频 | 成人无码视频免费播放 | 国产真实乱对白精彩久久 | 国产熟妇高潮叫床视频播放 | 欧美人妻一区二区三区 | 熟女俱乐部五十路六十路av | 国产人妻人伦精品1国产丝袜 | 精品人人妻人人澡人人爽人人 | 欧美日本日韩 | 无码吃奶揉捏奶头高潮视频 | 精品 日韩 国产 欧美 视频 | 综合激情五月综合激情五月激情1 | 色 综合 欧美 亚洲 国产 | 国产色在线 | 国产 | 亚洲色欲色欲天天天www | 帮老师解开蕾丝奶罩吸乳网站 | 一本无码人妻在中文字幕免费 | 精品日本一区二区三区在线观看 | 欧美 丝袜 自拍 制服 另类 | 亚洲va中文字幕无码久久不卡 | 无码精品人妻一区二区三区av | 3d动漫精品啪啪一区二区中 | 亚洲精品国偷拍自产在线观看蜜桃 | 欧美人与物videos另类 | 亚洲中文字幕久久无码 | 日韩在线不卡免费视频一区 | 日韩无码专区 | a片在线免费观看 | 久久99久久99精品中文字幕 | 欧美激情综合亚洲一二区 | 国产成人无码午夜视频在线观看 | 理论片87福利理论电影 | 香港三级日本三级妇三级 | 久久久久国色av免费观看性色 | 久久熟妇人妻午夜寂寞影院 | 99精品国产综合久久久久五月天 | 女人和拘做爰正片视频 | 俺去俺来也在线www色官网 | 天堂在线观看www | 97se亚洲精品一区 | 欧美国产日韩亚洲中文 | 岛国片人妻三上悠亚 | 精品久久综合1区2区3区激情 | 国产农村妇女高潮大叫 | 亚洲国产一区二区三区在线观看 | 久久国产精品偷任你爽任你 | 国产手机在线αⅴ片无码观看 | 偷窥日本少妇撒尿chinese | 精品国产成人一区二区三区 | 国产成人精品必看 | 国产国产精品人在线视 | 在线观看欧美一区二区三区 | 久久99精品国产麻豆 | 精品久久久无码人妻字幂 | 亚洲乱亚洲乱妇50p | 久久久久亚洲精品男人的天堂 | а天堂中文在线官网 | 亚洲欧美日韩国产精品一区二区 | 最近的中文字幕在线看视频 | 国产偷国产偷精品高清尤物 | 在线亚洲高清揄拍自拍一品区 | 国产精品无码一区二区桃花视频 | 亚洲国产精品久久人人爱 | 国产午夜福利100集发布 | 亚洲色成人中文字幕网站 | 内射后入在线观看一区 | 亚拍精品一区二区三区探花 | 国产97人人超碰caoprom | 亚洲综合色区中文字幕 | 欧美性黑人极品hd | 精品国产av色一区二区深夜久久 | 亚洲精品国产精品乱码视色 | 亚洲国产精品成人久久蜜臀 | 76少妇精品导航 | 人人妻人人藻人人爽欧美一区 | 俺去俺来也在线www色官网 | 亚洲小说图区综合在线 | 性生交大片免费看l | 亚洲成色在线综合网站 | 98国产精品综合一区二区三区 | 激情国产av做激情国产爱 | 久久国产精品萌白酱免费 | 无码精品人妻一区二区三区av | 日韩精品无码一区二区中文字幕 | 国产真人无遮挡作爱免费视频 | aa片在线观看视频在线播放 | 亚洲爆乳精品无码一区二区三区 | 精品久久8x国产免费观看 | 精品国产麻豆免费人成网站 | 野狼第一精品社区 | 丰满人妻被黑人猛烈进入 | 欧美xxxx黑人又粗又长 | 免费无码一区二区三区蜜桃大 | 天堂久久天堂av色综合 | 女人被男人躁得好爽免费视频 | 内射巨臀欧美在线视频 | 东北女人啪啪对白 | 久久精品人人做人人综合试看 | 人人妻人人澡人人爽欧美一区 | 久久午夜夜伦鲁鲁片无码免费 | 国产午夜精品一区二区三区嫩草 | 亚洲精品国产品国语在线观看 | 国产精品久久久久影院嫩草 | 婷婷丁香六月激情综合啪 | 色狠狠av一区二区三区 | 中国女人内谢69xxxx | 日日干夜夜干 | 国产乱人伦偷精品视频 | 亚洲一区二区三区播放 | 免费无码肉片在线观看 | 无码国模国产在线观看 | 无码成人精品区在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 亚洲成色www久久网站 | 中国女人内谢69xxxxxa片 | 捆绑白丝粉色jk震动捧喷白浆 | 国产网红无码精品视频 | 在线观看国产一区二区三区 | 18黄暴禁片在线观看 | 欧美日韩人成综合在线播放 | 国产精品沙发午睡系列 | 亚洲色无码一区二区三区 | 超碰97人人做人人爱少妇 | 国产另类ts人妖一区二区 | 又大又硬又爽免费视频 | 国产特级毛片aaaaaaa高清 | 狠狠色噜噜狠狠狠狠7777米奇 | 国产熟妇另类久久久久 | 国产精品久久久午夜夜伦鲁鲁 | 东京一本一道一二三区 | 成人精品一区二区三区中文字幕 | 蜜桃臀无码内射一区二区三区 | 亚洲精品综合五月久久小说 | 国产特级毛片aaaaaa高潮流水 | 极品尤物被啪到呻吟喷水 | 少妇的肉体aa片免费 | 国产人妻精品一区二区三区 | 丰满岳乱妇在线观看中字无码 | 国产做国产爱免费视频 | 亚洲精品午夜国产va久久成人 | 午夜福利一区二区三区在线观看 | 亚洲国产精品美女久久久久 | 小泽玛莉亚一区二区视频在线 | 午夜性刺激在线视频免费 | 亚洲精品午夜国产va久久成人 | 免费无码av一区二区 | 少妇人妻av毛片在线看 | aⅴ在线视频男人的天堂 | 精品偷自拍另类在线观看 | av无码电影一区二区三区 | 国产免费久久精品国产传媒 | 一二三四社区在线中文视频 | 国产乱子伦视频在线播放 | 欧美老熟妇乱xxxxx | 欧美日韩在线亚洲综合国产人 | 99麻豆久久久国产精品免费 | 久久无码专区国产精品s | 天堂无码人妻精品一区二区三区 | 欧美成人免费全部网站 | 激情爆乳一区二区三区 | 东北女人啪啪对白 | 欧美日韩一区二区三区自拍 | 国产无遮挡又黄又爽又色 | 国产乱人伦偷精品视频 | 欧美人与禽zoz0性伦交 | 亚洲国产一区二区三区在线观看 | 国产精品久久久久9999小说 | 欧美丰满熟妇xxxx | 欧美人与物videos另类 | 国产无av码在线观看 | 黑人巨大精品欧美黑寡妇 | 国产乱人伦偷精品视频 | 精品国产一区二区三区av 性色 | 黑人巨大精品欧美一区二区 | 强开小婷嫩苞又嫩又紧视频 | 免费人成网站视频在线观看 | 装睡被陌生人摸出水好爽 | 在线播放免费人成毛片乱码 | 乌克兰少妇性做爰 | 内射爽无广熟女亚洲 | 午夜男女很黄的视频 | 999久久久国产精品消防器材 | 中文字幕无码热在线视频 | 久久久久亚洲精品中文字幕 | 成人无码视频在线观看网站 | 久久国产精品_国产精品 | 国产乱子伦视频在线播放 | 久久人人爽人人人人片 | 亚洲国精产品一二二线 | 亚洲另类伦春色综合小说 | 久久精品人人做人人综合 | 色老头在线一区二区三区 | 亚洲欧美国产精品专区久久 | 亚洲国产精品美女久久久久 | 99久久久国产精品无码免费 | 台湾无码一区二区 | 亚洲成av人影院在线观看 | 午夜福利一区二区三区在线观看 | 无码一区二区三区在线观看 | 日本精品高清一区二区 | 免费男性肉肉影院 | 97无码免费人妻超级碰碰夜夜 | 精品午夜福利在线观看 | 亚洲欧洲中文日韩av乱码 | 久久综合色之久久综合 | 中文字幕乱码人妻无码久久 | 色婷婷综合激情综在线播放 | 欧美日韩色另类综合 | 九九在线中文字幕无码 | 亚洲综合无码一区二区三区 | 久久久久av无码免费网 | 亚洲欧美精品伊人久久 | 久久久www成人免费毛片 | 成 人影片 免费观看 | 久久综合九色综合97网 | 亚洲综合无码久久精品综合 | 精品一区二区不卡无码av | 国产无遮挡又黄又爽免费视频 | 在线 国产 欧美 亚洲 天堂 | 国产人成高清在线视频99最全资源 | 久久亚洲a片com人成 | 亚洲人亚洲人成电影网站色 | 日韩av无码一区二区三区 | 无码任你躁久久久久久久 | 极品嫩模高潮叫床 | 色情久久久av熟女人妻网站 | 国产绳艺sm调教室论坛 | 成人aaa片一区国产精品 | 久久熟妇人妻午夜寂寞影院 | 中文字幕人妻无码一区二区三区 | 日本高清一区免费中文视频 | 麻豆国产人妻欲求不满谁演的 | ass日本丰满熟妇pics | 夜夜躁日日躁狠狠久久av | 国产精品香蕉在线观看 | 国产精品亚洲五月天高清 | 我要看www免费看插插视频 | 丰满妇女强制高潮18xxxx | 一二三四社区在线中文视频 | 国内精品久久久久久中文字幕 | 国产成人综合在线女婷五月99播放 | 精品午夜福利在线观看 | 成人试看120秒体验区 | 欧美 丝袜 自拍 制服 另类 | 久久97精品久久久久久久不卡 | 67194成是人免费无码 | 国产网红无码精品视频 | 国产精品香蕉在线观看 | 国产激情精品一区二区三区 | 色婷婷综合激情综在线播放 | 中文字幕+乱码+中文字幕一区 | 亚洲a无码综合a国产av中文 | 曰本女人与公拘交酡免费视频 | 精品aⅴ一区二区三区 | 丁香花在线影院观看在线播放 | 在线а√天堂中文官网 | 亚洲欧美日韩综合久久久 | 欧美xxxx黑人又粗又长 | 久久精品视频在线看15 | 大地资源中文第3页 | 久久精品国产一区二区三区 | 亚洲国产精品无码一区二区三区 | 久久午夜无码鲁丝片午夜精品 | 色婷婷久久一区二区三区麻豆 | 国色天香社区在线视频 | 久久精品人人做人人综合试看 | 狂野欧美激情性xxxx | 女人高潮内射99精品 | 少妇人妻av毛片在线看 | 免费国产成人高清在线观看网站 | 久久97精品久久久久久久不卡 | 久久亚洲中文字幕无码 | 精品久久久久久人妻无码中文字幕 | 亚洲综合另类小说色区 | 动漫av一区二区在线观看 | 又紧又大又爽精品一区二区 | 成 人影片 免费观看 | 中文精品久久久久人妻不卡 | 国产精品无码mv在线观看 | 人妻尝试又大又粗久久 | 2020久久香蕉国产线看观看 | 伊人久久大香线蕉av一区二区 | 人人超人人超碰超国产 | 日韩无套无码精品 | 妺妺窝人体色www在线小说 | 小泽玛莉亚一区二区视频在线 | 中国女人内谢69xxxxxa片 | 国产亚洲精品久久久久久久 | 三级4级全黄60分钟 | 欧美色就是色 | 国产真实伦对白全集 | 97色伦图片97综合影院 | 亚洲综合无码一区二区三区 | 无码午夜成人1000部免费视频 | 久久精品无码一区二区三区 | 久久天天躁夜夜躁狠狠 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 精品一区二区不卡无码av | 中文字幕乱码人妻无码久久 | 国产成人综合在线女婷五月99播放 | 久久久中文久久久无码 | 亚洲爆乳无码专区 | 人妻中文无码久热丝袜 | 亚洲熟妇自偷自拍另类 | 一本久久a久久精品vr综合 | 久久人人97超碰a片精品 | 精品无码成人片一区二区98 | 中文字幕久久久久人妻 | a片免费视频在线观看 | 国产激情艳情在线看视频 | 日韩人妻无码中文字幕视频 | 亚洲人交乣女bbw | 人人妻人人澡人人爽精品欧美 | 亚洲国产日韩a在线播放 | 色五月丁香五月综合五月 | 国产成人无码a区在线观看视频app | 日韩成人一区二区三区在线观看 | 免费国产成人高清在线观看网站 | 377p欧洲日本亚洲大胆 | 少妇太爽了在线观看 | 国产手机在线αⅴ片无码观看 | 亚洲日韩一区二区 | 精品亚洲成av人在线观看 | 亚洲精品午夜无码电影网 | 精品久久综合1区2区3区激情 | 福利一区二区三区视频在线观看 | 亚洲国产精品成人久久蜜臀 | 日韩av无码中文无码电影 | 免费观看激色视频网站 | 国产乡下妇女做爰 | 麻豆精产国品 | 欧美激情一区二区三区成人 | 老熟女乱子伦 | 装睡被陌生人摸出水好爽 | 国产亚av手机在线观看 | 色 综合 欧美 亚洲 国产 | 中国女人内谢69xxxx | 中文字幕乱妇无码av在线 | 国产97色在线 | 免 | 欧美精品一区二区精品久久 | 伊人色综合久久天天小片 | 色窝窝无码一区二区三区色欲 | 成在人线av无码免费 | 国内少妇偷人精品视频 | 黑人大群体交免费视频 | 日韩精品久久久肉伦网站 | 最近的中文字幕在线看视频 | 亚洲精品久久久久久一区二区 | 四十如虎的丰满熟妇啪啪 | 人妻人人添人妻人人爱 | 综合网日日天干夜夜久久 | 影音先锋中文字幕无码 | 色一情一乱一伦一视频免费看 | 国产熟妇另类久久久久 | 狠狠cao日日穞夜夜穞av | 久久99精品久久久久久动态图 | 日本一卡2卡3卡四卡精品网站 | 九九综合va免费看 | 日韩欧美成人免费观看 | 久久人人爽人人人人片 |