机器学习认识聚类(KMeans算法)
導讀:機器是怎樣學習的,都學到了什么?人類又是怎樣教會機器學習的?本文通過案例給你講清楚各類算法的原理和應用。
機器學習,一言以蔽之就是人類定義一定的計算機算法,讓計算機根據輸入的樣本和一些人類的干預來總結和歸納其特征和特點,并用這些特征和特點和一定的學習目標形成映射關系,進而自動化地做出相應反應的過程。這個反應可能是做出相應的標記或判斷,也可能是輸出一段內容——圖片、程序代碼、文本、聲音,而機器自己學到的內容我們可以描述為一個函數、一段程序、一組策略等相對復雜的關系描述。
◆ ◆ ◆ ◆ ◆
什么是聚類
聚類是數據挖掘中的概念,就是按照某個特定標準(如距離)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。也即聚類后同一類的數據盡可能聚集到一起,不同類數據盡量分離。
◆ ◆ ◆ ◆ ◆
什么是K均值聚類算法
K均值聚類算法是先隨機選取K個對象作為初始的聚類中心。然后計算每個對象與各個種子聚類中心之間的距離,把每個對象分配給距離它最近的聚類中心。聚類中心以及分配給它們的對象就代表一個聚類。一旦全部對象都被分配了,每個聚類的聚類中心會根據聚類中現有的對象被重新計算。這個過程將不斷重復直到滿足某個終止條件。終止條件可以是沒有(或最小數目)對象被重新分配給不同的聚類,沒有(或最小數目)聚類中心再發生變化,誤差平方和局部最小。
K-Means算法的思想很簡單,對于給定的樣本集,按照樣本之間的距離大
與50位技術專家面對面20年技術見證,附贈技術全景圖總結
以上是生活随笔為你收集整理的机器学习认识聚类(KMeans算法)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 四十四、Mysql的命令和PyMysql
- 下一篇: 水蒸鸡蛋羹要蒸多久啊?