统计学习方法第二十章作业:潜在狄利克雷分配 LDA 吉布斯抽样法算法 代码实现
生活随笔
收集整理的這篇文章主要介紹了
统计学习方法第二十章作业:潜在狄利克雷分配 LDA 吉布斯抽样法算法 代码实现
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
潛在狄利克雷分配 LDA 吉布斯抽樣法算法
import numpy as np import jiebaclass LDA:def __init__(self,text_list,k):self.k = kself.text_list = text_listself.text_num = len(text_list)self.get_X()self.NKV = np.zeros((self.k,self.word_num))self.NMK = np.zeros((self.text_num,self.k))self.nm = np.zeros(self.text_num)self.nk = np.zeros(self.k)self.zmn = [[] for i in range(self.text_num)]self.alpha = np.random.randint(1,self.k,size=k)self.beta = np.random.randint(1,self.word_num, size=self.word_num)def get_X(self):self.cuted_text = [jieba.lcut(text,cut_all=True) for text in self.text_list]self.word_all = []for i in self.cuted_text:self.word_all.extend(i)self.word_set = list(set(self.word_all))self.word_num = len(self.word_set)self.word_dict = {}for index,word in enumerate(self.word_set):self.word_dict[word] = indexdef initial_K(self):for doc_num in range(self.text_num):for word in self.cuted_text[doc_num]:k = np.random.choice(self.k, 1)[0]self.zmn[doc_num].append(k)v = self.word_dict[word]self.NMK[doc_num,k] += 1self.nm[doc_num] += 1self.NKV[k,v] += 1self.nk[k] += 1def iter_jbs(self):for doc_num in range(self.text_num):for word_index in range(len(self.cuted_text[doc_num])):v = self.word_dict[self.cuted_text[doc_num][word_index]]k = self.zmn[doc_num][word_index]self.NMK[doc_num,k] -= 1self.nm[doc_num] -= 1self.NKV[k,v] -= 1self.nk[k] -= 1p_klist = (self.NKV[:,v]+self.beta[v])/np.sum(self.NKV[:,v]+self.beta[v])*(self.NMK[doc_num]+self.alpha[k])/np.sum(self.NMK[doc_num]+self.alpha[k])p_klist = p_klist/np.sum(p_klist)k_choice = np.random.choice(self.k,p = p_klist)self.zmn[doc_num][word_index] = k_choiceself.NMK[doc_num,k_choice] += 1self.nm[doc_num] += 1self.NKV[k_choice,v] += 1self.nk[k_choice] += 1def get_sita_y(self):self.sita_mk = np.zeros((self.text_num,self.k))self.yta_kv = np.zeros((self.k,self.word_num))for i in range(self.text_num):self.sita_mk[i] = (self.NMK[i]+self.alpha)/np.sum(self.NMK[i])for j in range(self.k):self.yta_kv[j] = (self.NKV[j]+self.beta)/np.sum(self.NKV[j])def fit(self,max_iter = 100):self.initial_K()for iter in range(max_iter):print(iter)self.iter_jbs()self.get_sita_y()def main():text_list = ['一個月前,足協杯十六進八的比賽,遼足費盡周折對調主客場,目的只是為了葫蘆島體育場的啟用儀式。那場球遼足5比0痛宰“主力休息”的天津泰達。幾天后中超聯賽遼足客場對天津,輪到遼足“全替補”,\1比3輸球,甘為天津泰達保級的祭品。那時,遼足以“聯賽保級問題不大,足協杯拼一拼”作為主力和外援聯賽全部缺陣的理由。','被一腳踹進“忘恩負義”坑里的孫楊,剛剛爬出來,又有手伸出來,要把孫楊再往坑里推。即使是陪伴孫楊參加世錦賽的張亞東(微博)教練,\也沒敢大義凜然地伸出援手,“孫楊愿意回去我不攔”,球又踢給了孫楊。張亞東教練怕什么呢?','孫楊成績的利益分配,以及榮譽的分享,圈里人都知道,拿了世界冠軍和全運冠軍,運動員都會有相應的高額獎金,那么主管教練也會得到與之對應的豐厚獎勵,\所以孫楊獲得的榮譽,也會惠及主管教練。']k = 2lda = LDA(text_list,k)lda.fit()print(lda.sita_mk)print(lda.yta_kv)if __name__ == '__main__':main()#result--------------------------[[0.20689655 0.81034483][0.7 0.32222222][0.50666667 0.52 ]][[1.2295082 0.12295082 0.58196721 1.21311475 1.08196721 0.065573771.12295082 0.18032787 0.98360656 0.16393443 0.78688525 1.016393440.7704918 1.12295082 1.01639344 0.43442623 1.00819672 0.721311480.70491803 0.21311475 0.78688525 0.14754098 0.6147541 0.532786890.59836066 1.20491803 0.6557377 0.01639344 1.05737705 0.532786891.22131148 0.71311475 1.29508197 1.23770492 0.59016393 1.204918030.13114754 0.04918033 0.99180328 0.93442623 1.27868852 1.15573770.90983607 0.66393443 1.08196721 1.07377049 0.57377049 0.081967210.17213115 0.54098361 1.14754098 0.98360656 0.17213115 0.262295080.6557377 1.12295082 0.80327869 0.77868852 1.10655738 0.819672130.79508197 0.41803279 0.63934426 0.36065574 1.29508197 0.745901640.99180328 1.14754098 0.67213115 0.33606557 0.40163934 0.737704920.67213115 0.86885246 0.18852459 0.17213115 0.75409836 0.336065570.07377049 1.13114754 0.40163934 0.63934426 0.36885246 1.278688521.19672131 0.35245902 1.10655738 0.21311475 1.19672131 0.713114750.29508197 0.67213115 1.02459016 0.87704918 0.81147541 1.049180330.1147541 1.1147541 0.40163934 1.05737705 0.31147541 0.409836070.31147541 0.59016393 0.74590164 1.18852459 1.32786885 0.745901640.48360656 0.42622951 0.8442623 1.22131148 0.95901639 0.696721310.09836066 1.26229508 1.1147541 0.63934426 1.1557377 0.147540981.18032787 0.1557377 0.93442623 0.63114754 0.45901639 0.524590161.28688525 1.13114754 0.91803279 1.27868852 0.82786885 0.311475410.33606557 0.41803279 1.30327869 0.99180328 1.31147541 1.172131150.97540984 1.19672131 0.24590164 0.90983607 0.59016393 0.491803280.87704918 1.08196721 0.42622951 0.27868852 0.49180328 0.696721310.08196721 0.48360656 0.5 0.7704918 0.95081967 1.0.52459016 0.16393443 1.1147541 0.18852459 0.82786885 1.090163930.1147541 0.93442623][0.99371069 0.10691824 0.44025157 0.93710692 0.83647799 0.056603770.88679245 0.14465409 0.76100629 0.1509434 0.61006289 0.786163520.59119497 0.87421384 0.77987421 0.35220126 0.77358491 0.559748430.53459119 0.17610063 0.60377358 0.11949686 0.47798742 0.408805030.45283019 0.93081761 0.50314465 0.00628931 0.81761006 0.415094340.93081761 0.55345912 0.98742138 0.94339623 0.44654088 0.918238990.10691824 0.03144654 0.7672956 0.72327044 0.98742138 0.880503140.71069182 0.51572327 0.83647799 0.81761006 0.44654088 0.056603770.12578616 0.40880503 0.87421384 0.74842767 0.12578616 0.194968550.50943396 0.85534591 0.62264151 0.60377358 0.8427673 0.660377360.6163522 0.32704403 0.48427673 0.27044025 1.01257862 0.566037740.74213836 0.86792453 0.50943396 0.25157233 0.31446541 0.572327040.52830189 0.65408805 0.1509434 0.12578616 0.58490566 0.264150940.05660377 0.8490566 0.31446541 0.50314465 0.27044025 0.987421380.9245283 0.27672956 0.8427673 0.16981132 0.9245283 0.547169810.2327044 0.52201258 0.77987421 0.67924528 0.63522013 0.798742140.08805031 0.8490566 0.29559748 0.81761006 0.24528302 0.320754720.25157233 0.4591195 0.57861635 0.90566038 1.02515723 0.566037740.36477987 0.32075472 0.65408805 0.93710692 0.72955975 0.528301890.08176101 0.97484277 0.8490566 0.49685535 0.89308176 0.119496860.89937107 0.11320755 0.70440252 0.49056604 0.33962264 0.408805030.98113208 0.86163522 0.69811321 0.97484277 0.66037736 0.245283020.25157233 0.32075472 0.99371069 0.75471698 1.01257862 0.893081760.75471698 0.93081761 0.18238994 0.6918239 0.4591195 0.364779870.66666667 0.80503145 0.32075472 0.22012579 0.3836478 0.528301890.05660377 0.37735849 0.37735849 0.58490566 0.74213836 0.773584910.40251572 0.13207547 0.8490566 0.1509434 0.64150943 0.836477990.09433962 0.72327044]]總結
以上是生活随笔為你收集整理的统计学习方法第二十章作业:潜在狄利克雷分配 LDA 吉布斯抽样法算法 代码实现的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 统计学习方法第十九章作业:马尔可夫链蒙特
- 下一篇: 统计学习方法第二十一章作业:PageRa