简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)
Numpy是一個用python實現的科學計算的擴展程序庫,包括:
1、一個強大的N維數組對象Array;
2、比較成熟的(廣播)函數庫;
3、用于整合C/C++和Fortran代碼的工具包;
4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
NumPy(Numeric Python)提供了許多高級的數值編程工具,如:矩陣數據類型、矢量處理,以及精密的運算庫。專為進行嚴格的數字處理而產生。多為很多大型金融公司使用,以及核心的科學計算組織如:Lawrence Livermore,NASA用其處理一些本來使用C++,Fortran或Matlab等所做的任務。
本文整理了一個Numpy的小抄表,總結了Numpy的常用操作,可以收藏慢慢看。
安裝Numpy
可以通過 Pip 或者 Anaconda安裝Numpy:
$ pip install numpy或
$ conda install numpy本文目錄
基礎
占位符
數組
增加或減少元素
合并數組
分割數組
數組形狀變化
拷貝 /排序
數組操作
其他
數學計算
數學計算
比較
基礎統計
更多
切片和子集
小技巧
基礎
NumPy最常用的功能之一就是NumPy數組:列表和NumPy數組的最主要區別在于功能性和速度。
列表提供基本操作,但NumPy添加了FTTs、卷積、快速搜索、基本統計、線性代數、直方圖等。
兩者數據科學最重要的區別是能夠用NumPy數組進行元素級計算。
axis 0 通常指行
axis 1 通常指列
操作描述文檔 np.array([1,2,3]) 一維數組 https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array np.array([(1,2,3),(4,5,6)]) 二維數組 https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array np.arange(start,stop,step) 等差數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html 占位符
操作 描述 文檔 np.linspace(0,2,9) 數組中添加等差的值 https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html np.zeros((1,2)) 創建全0數組 docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html np.ones((1,2)) 創建全1數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones np.random.random((5,5)) 創建隨機數的數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random.html np.empty((2,2)) 創建空數組 https://numpy.org/doc/stable/reference/generated/numpy.empty.html 舉例:
import numpy as np# 1 dimensional x = np.array([1,2,3]) # 2 dimensional y = np.array([(1,2,3),(4,5,6)])x = np.arange(3) >>> array([0, 1, 2])y = np.arange(3.0) >>> array([ 0., 1., 2.])x = np.arange(3,7) >>> array([3, 4, 5, 6])y = np.arange(3,7,2) >>> array([3, 5])數組屬性
數組屬性
語法描述文檔 array.shape 維度(行,列) https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html len(array) 數組長度 https://docs.python.org/3.5/library/functions.html#len array.ndim 數組的維度數 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html array.size 數組的元素數 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html array.dtype 數據類型 https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html array.astype(type) 轉換數組類型 https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html type(array) 顯示數組類型 https://numpy.org/doc/stable/user/basics.types.html 拷貝?/排序
操作描述文檔 np.copy(array) 創建數組拷貝 https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html other = array.copy() 創建數組深拷貝 https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html array.sort() 排序一個數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html array.sort(axis=0) 按照指定軸排序一個數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html 舉例
import numpy as np # Sort sorts in ascending order y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]) y.sort() print(y) >>> [ 1 2 3 4 5 6 7 8 9 10]數組操作例程
增加或減少元素
操作描述文檔 np.append(a,b) 增加數據項到數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html np.insert(array, 1, 2, axis) 沿著數組0軸或者1軸插入數據項 https://docs.scipy.org/doc/numpy/reference/generated/numpy.insert.html np.resize((2,4)) 將數組調整為形狀(2,4) https://docs.scipy.org/doc/numpy/reference/generated/numpy.resize.html np.delete(array,1,axis) 從數組里刪除數據項 https://numpy.org/doc/stable/reference/generated/numpy.delete.html 舉例
import numpy as np # Append items to array a = np.array([(1, 2, 3),(4, 5, 6)]) b = np.append(a, [(7, 8, 9)]) print(b) >>> [1 2 3 4 5 6 7 8 9]# Remove index 2 from previous array print(np.delete(b, 2)) >>> [1 2 4 5 6 7 8 9]組合數組
操作描述文檔 np.concatenate((a,b),axis=0) 連接2個數組,添加到末尾 https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html np.vstack((a,b)) 按照行堆疊數組 https://numpy.org/doc/stable/reference/generated/numpy.vstack.html np.hstack((a,b)) 按照列堆疊數組 docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack 舉例
import numpy as np a = np.array([1, 3, 5]) b = np.array([2, 4, 6])# Stack two arrays row-wise print(np.vstack((a,b))) >>> [[1 3 5][2 4 6]]# Stack two arrays column-wise print(np.hstack((a,b))) >>> [1 3 5 2 4 6]分割數組
操作 描述 文檔 numpy.split() 分割數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html np.array_split(array, 3) 將數組拆分為大小(幾乎)相同的子數組 https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split numpy.hsplit(array, 3) 在第3個索引處水平拆分數組 https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit 舉例
# Split array into groups of ~3 a = np.array([1, 2, 3, 4, 5, 6, 7, 8]) print(np.array_split(a, 3)) >>> [array([1, 2, 3]), array([4, 5, 6]), array([7, 8])]數組形狀變化
操作
操作描述文檔 other = ndarray.flatten() 平鋪一個二維數組到一維數組 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html numpy.flip() 翻轉一維數組中元素的順序 https://docs.scipy.org/doc/stable/reference/generated/numpy.flip.html np.ndarray[::-1] 翻轉一維數組中元素的順序 reshape 改變數組的維數 https://docs.scipy.org/doc/stable/reference/generated/numpy.reshape.html squeeze 從數組的形狀中刪除單維度條目 https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html expand_dims 擴展數組維度 https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expand_dims.html 其他
操作描述文檔 other = ndarray.flatten() 平鋪2維數組到1維數組 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html array = np.transpose(other)
array.T數組轉置 https://numpy.org/doc/stable/reference/generated/numpy.transpose.html inverse = np.linalg.inv(matrix) 求矩陣的逆矩陣 https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html 舉例
# Find inverse of a given matrix >>> np.linalg.inv([[3,1],[2,4]]) array([[ 0.4, -0.1],[-0.2, 0.3]])數學計算
操作
操作描述文檔 np.add(x,y)
x + y加 https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html np.substract(x,y)
x - y減 https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract np.divide(x,y)
x / y除 https://docs.scipy.org/doc/numpy/reference/generated/numpy.divide.html#numpy.divide np.multiply(x,y)
x * y乘 https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply np.sqrt(x) 平方根 https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html#numpy.sqrt np.sin(x) 元素正弦 https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin np.cos(x) 元素余弦 https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos np.log(x) 元素自然對數 https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log np.dot(x,y) 點積 https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html np.roots([1,0,-4]) 給定多項式系數的根 https://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html 舉例
# If a 1d array is added to a 2d array (or the other way), NumPy # chooses the array with smaller dimension and adds it to the one # with bigger dimension a = np.array([1, 2, 3]) b = np.array([(1, 2, 3), (4, 5, 6)]) print(np.add(a, b)) >>> [[2 4 6][5 7 9]]# Example of np.roots # Consider a polynomial function (x-1)^2 = x^2 - 2*x + 1 # Whose roots are 1,1 >>> np.roots([1,-2,1]) array([1., 1.]) # Similarly x^2 - 4 = 0 has roots as x=±2 >>> np.roots([1,0,-4]) array([-2., 2.])比較
操作描述文檔 == 等于 https://docs.python.org/2/library/stdtypes.html != 不等于 https://docs.python.org/2/library/stdtypes.html < 小于 https://docs.python.org/2/library/stdtypes.html > 大于 https://docs.python.org/2/library/stdtypes.html <= 小于等于 https://docs.python.org/2/library/stdtypes.html >= 大于等于 https://docs.python.org/2/library/stdtypes.html np.array_equal(x,y) 數組比較 https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html 舉例:
# Using comparison operators will create boolean NumPy arrays z = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) c = z < 6 print(c) >>> [ True True True True True False False False False False]基本的統計
操作描述文檔 np.mean(array) Mean https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean np.median(array) Median https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median array.corrcoef() Correlation Coefficient https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef np.std(array) Standard Deviation https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std 舉例
# Statistics of an array a = np.array([1, 1, 2, 5, 8, 10, 11, 12])# Standard deviation print(np.std(a)) >>> 4.2938910093294167# Median print(np.median(a)) >>> 6.5更多
操作描述文檔 array.sum() 數組求和 https://numpy.org/doc/stable/reference/generated/numpy.sum.html array.min() 數組求最小值 https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html array.max(axis=0) 數組求最大值(沿著0軸) array.cumsum(axis=0) 指定軸求累計和 https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html 切片和子集
操作描述文檔 array[i] 索引i處的一維數組 https://numpy.org/doc/stable/reference/arrays.indexing.html array[i,j] 索引在[i][j]處的二維數組 https://numpy.org/doc/stable/reference/arrays.indexing.html array[i<4] 布爾索引 https://numpy.org/doc/stable/reference/arrays.indexing.html array[0:3] 選擇索引為 0, 1和?2 https://numpy.org/doc/stable/reference/arrays.indexing.html array[0:2,1] 選擇第0,1行,第1列 https://numpy.org/doc/stable/reference/arrays.indexing.html array[:1] 選擇第0行數據項?(與[0:1, :]相同) https://numpy.org/doc/stable/reference/arrays.indexing.html array[1:2, :] 選擇第1行 https://numpy.org/doc/stable/reference/arrays.indexing.html [comment]: <> " array[1,...] 等同于 array[1,:,:] array[ : :-1] 反轉數組 同上 舉例
b = np.array([(1, 2, 3), (4, 5, 6)])# The index *before* the comma refers to *rows*, # the index *after* the comma refers to *columns* print(b[0:1, 2]) >>> [3]print(b[:len(b), 2]) >>> [3 6]print(b[0, :]) >>> [1 2 3]print(b[0, 2:]) >>> [3]print(b[:, 0]) >>> [1 4]c = np.array([(1, 2, 3), (4, 5, 6)]) d = c[1:2, 0:2] print(d) >>> [[4 5]]切片舉例
import numpy as np a1 = np.arange(0, 6) a2 = np.arange(10, 16) a3 = np.arange(20, 26) a4 = np.arange(30, 36) a5 = np.arange(40, 46) a6 = np.arange(50, 56) a?=?np.vstack((a1,?a2,?a3,?a4,?a5,?a6))生成矩陣和切片圖示
小技巧
例子將會越來越多的,歡迎大家提交。
布爾索引?
# Index trick when working with two np-arrays a = np.array([1,2,3,6,1,4,1]) b = np.array([5,6,7,8,3,1,2])# Only saves a at index where b == 1 other_a = a[b == 1] #Saves every spot in a except at index where b != 1 other_other_a = a[b != 1] import numpy as np x = np.array([4,6,8,1,2,6,9]) y = x > 5 print(x[y]) >>> [6 8 6 9]# Even shorter x = np.array([1, 2, 3, 4, 4, 35, 212, 5, 5, 6]) print(x[x < 5]) >>> [1 2 3 4 4]【參考】https://github.com/juliangaal/python-cheat-sheet
往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習及深度學習筆記等資料打印機器學習在線手冊深度學習筆記專輯《統計學習方法》的代碼復現專輯 AI基礎下載機器學習的數學基礎專輯獲取一折本站知識星球優惠券,復制鏈接直接打開:https://t.zsxq.com/yFQV7am本站qq群1003271085。加入微信群請掃碼進群:
總結
以上是生活随笔為你收集整理的简约而不简单|值得收藏的Numpy小抄表(含主要语法、代码)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python基础】Github标星4.
- 下一篇: 【深度学习】深度学习语义分割理论与实战指