python 网格_Python | 网格到情节
python 網格
Most of the time, we need good accuracy in data visualization and a normal plot can be ambiguous. So, it is better to use a grid that allows us to locate the approximate value near the points in the plot. It helps in reducing the ambiguity and therefore, there is a function plt.grid() which generates a grid through the plot and enables better visualization.
大多數時候,我們需要在數據可視化中具有良好的準確性,并且法線圖可能會模棱兩可。 因此,最好使用允許我們在繪圖中的點附近定位近似值的網格。 它有助于減少歧義,因此有一個函數plt.grid()可以生成整個圖的網格并實現更好的可視化。
The following are examples for understanding the implementation Grid.
以下是用于了解實現Grid的示例。
1)網格線圖 (1) Line plot with Grid)
2)帶網格的條形圖 (2) Bar Graph with Grid)
3)帶有網格的散點圖 (3) Scatter Plot with Grid)
Python代碼演示網格圖示例 (Python code to demonstrate example of grid to the plot)
# Data Visualization using Python # Adding Gridimport numpy as np import matplotlib.pyplot as plt# Line Plot N = 40 x = np.arange(N) y = np.random.rand(N)*10 yy = np.random.rand(N)*10 plt.figure() plt.plot(x,y) plt.plot(x,yy) plt.xlabel('Numbers') plt.ylabel('Values') plt.title('Line Plot with Grid') plt.grid() plt.show()# Bar Graph N = 8 x = np.array([1,2,3,4,5,6,7,9]) xx = np.array(['a','b','c','d','e','f','g','u']) y = np.random.rand(N)*10 plt.figure() plt.bar(np.arange(26), np.random.randint(0,50,26), alpha = 0.6) plt.xlabel('Numbers') plt.ylabel('Values') plt.title('Bar Graph with Grid') plt.grid() plt.show()# Scatter Plot N = 40 x = np.random.rand(N) y = np.random.rand(N)*10 colors = np.random.rand(N) area = (30 * np.random.rand(N))**2 # 0 to 15 point radii plt.figure() plt.scatter(x, y, s=area, c=colors, alpha=0.8) plt.xlabel('Numbers') plt.ylabel('Values') plt.title('Scatter Plot with Grid') plt.grid() plt.show()翻譯自: https://www.includehelp.com/python/grid-to-the-plot.aspx
python 網格
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的python 网格_Python | 网格到情节的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: range函数python_range(
- 下一篇: 二维的完整形式是什么?