【NLP】面向对话的机器阅读理解任务(Dialogue MRC)相关论文整理
來自 | 知乎 作者 | 李家琦
鏈接|https://zhuanlan.zhihu.com/p/410984053
本文已獲作者授權(quán),未經(jīng)許可禁止二次轉(zhuǎn)載
Dialogue-based Machine Reading Comprehension任務(wù)是近兩年比較新的機(jī)器閱讀理解(MRC)任務(wù),任務(wù)目標(biāo)是讓機(jī)器去理解人們之間的對(duì)話。本文簡(jiǎn)要整理了該任務(wù)現(xiàn)有數(shù)據(jù)集,并推薦幾篇相關(guān)論文。
一、數(shù)據(jù)集
該任務(wù)現(xiàn)有的數(shù)據(jù)集主要有如下這些:
1. Ma et, al, 2018, NAACL(數(shù)據(jù)集沒有命名)
任務(wù)類型:完形填空
論文:Challenging reading comprehension on daily conversation: Passage completion on multiparty dialog.
數(shù)據(jù)集:GitHub - emorynlp/reading-comprehension: Reading comprehension on multiparty dialog.
2.?DREAM, TACL 2019
任務(wù)類型:單選題
論文:Dream: A challenge data set and models for dialogue-based reading comprehension.
數(shù)據(jù)集:A Challenge Dataset and Models for Dialogue-Based Reading Comprehension
3.?FriendsQA, SIGDial 2019
任務(wù)類型:Span-base
論文:FriendsQA: Open-Domain Question Answering on TV Show Transcripts
數(shù)據(jù)集:GitHub - emorynlp/FriendsQA: Question answering on multiparty dialogue
4.?Molweni,COLING 2020
任務(wù)類型:Span-based
論文:Molweni: A Challenge Multiparty Dialogue-based Machine Reading Comprehension Dataset with Discourse Structure
數(shù)據(jù)集:GitHub - HIT-SCIR/Molweni
5.?QAConv, arXiv 2021
任務(wù)類型:Span-based
論文:QAConv: Question Answering on Informative Conversations
數(shù)據(jù)集:GitHub - salesforce/QAConv: This repository maintains the QAConv dataset, a question-answering dataset on informative conversations including business emails, panel discussions, and work channels.
目前此任務(wù)上使用比較多的數(shù)據(jù)集主要是DREAM、FriendsQA和Molweni。在QAConv數(shù)據(jù)集論文中,作者還將現(xiàn)有的幾個(gè)數(shù)據(jù)集進(jìn)行了對(duì)比。
數(shù)據(jù)集對(duì)比,來自QAConv論文
二、模型
這部分主要推薦DREAM、FriendsQA和Molweni這3個(gè)數(shù)據(jù)集上比較有代表性的模型論文。
1. DREAM數(shù)據(jù)集相關(guān)模型論文推薦
a.?DUMA: Reading Comprehension with Transposition Thinking. arXiv 2020.
b.?Multi-task Learning with Multi-head Attention for Multi-choice Reading Comprehension. arXiv 2020.
2.?FriendsQA數(shù)據(jù)集相關(guān)模型論文推薦
a.?Transformers to Learn Hierarchical Contexts in Multiparty Dialogue for Span-based Question Answering. ACL 2020.
b.?Graph-based knowledge integration for question answering over dialogue. COLING 2020.
3.?Molweni數(shù)據(jù)集相關(guān)模型論文推薦
a.?DADgraph: A Discourse-aware Dialogue Graph Neural Network for Multiparty Dialogue Machine Reading Comprehension. IJCNN 2021.
b.?Self-and Pseudo-self-supervised Prediction of Speaker and Key-utterance for Multi-party Dialogue Reading Comprehension. EMNLP 2021 Findings.
c.?Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension. arXiv 2021.
以上是我簡(jiǎn)單整理的Dialogue MRC任務(wù)數(shù)據(jù)集和推薦的幾篇相關(guān)論文,歡迎補(bǔ)充!
往期精彩回顧適合初學(xué)者入門人工智能的路線及資料下載機(jī)器學(xué)習(xí)及深度學(xué)習(xí)筆記等資料打印機(jī)器學(xué)習(xí)在線手冊(cè)深度學(xué)習(xí)筆記專輯《統(tǒng)計(jì)學(xué)習(xí)方法》的代碼復(fù)現(xiàn)專輯 AI基礎(chǔ)下載黃海廣老師《機(jī)器學(xué)習(xí)課程》視頻課黃海廣老師《機(jī)器學(xué)習(xí)課程》711頁完整版課件本站qq群554839127,加入微信群請(qǐng)掃碼:
總結(jié)
以上是生活随笔為你收集整理的【NLP】面向对话的机器阅读理解任务(Dialogue MRC)相关论文整理的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【机器学习】盘点Kaggle中常见的Au
- 下一篇: 输入过滤筛选下拉信息(类似百度输入)