机器人学习--Robotics: Estimation and Learning(宾夕法尼亚大学COURSERA课程)
COURSERA網(wǎng)課網(wǎng)址:https://www.coursera.org/learn/robotics-learning#syllabus
總共四周課程,四個(gè)模塊內(nèi)容。
博客園網(wǎng)友截圖及學(xué)習(xí)筆記:https://www.cnblogs.com/ecoflex/p/9868474.html
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?https://blog.csdn.net/jinshengtao/article/details/81294285
?
?
?https://www.getit01.com/p2018012421648507/
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
converge to a local optima
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
The robot will not directly measure X unfortunately, but
?
the robot may observe portions of x through it's sensors.
?
This portion is labeled z, where the relationship between the state and
?
measurement is given by the mixing matrix, c.
??
?
?
Creditly both X and Z contain noise even in this model.
?
State X is noisy because the linear model does not capture all
?
physical interactions.
?
Observation Z are noisy because sensors contain noise in their measurements.
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
In the next section, we will show how these two probability distributions
?
can be fused to provide a better estimate of the true state.
?
?
?
?
?
?
?
?
?
?
From the dynamical system, the probability of the state given only the previous
?
state can be represented with the prior information?alpha.
?
Representing the information from our measurement model,
?
beta?provides observational evidence.
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
building a semantic map requires
?
advanced object recognition techniques which go beyond our scope.
?
?
?
?
?
?
?
?
?
?
?
?
?
?
But we are most interested in the range sensor it has on the top.
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?https://www.cnblogs.com/flash3d/archive/2012/01/30/2332121.html
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?https://www.quora.com/Why-do-self-driving-cars-use-LIDAR-instead-of-depth-cameras-like-Kinect
?
?https://www.zhihu.com/question/28749424
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
k-d tree算法
https://www.cnblogs.com/eyeszjwang/articles/2429382.html
?
?
?
?
?
?
?
?
?
?
A
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
Here, theta encompasses 270 degrees, not a full circle.
??
The laser scanner can only see 10 to 30 meters away.
??
In this range restriction, means that distance measurements
?
showing here is black dots, can only be found within the area in green.
?
?
?
?
?
The complimentary stages of mapping and localization when performed together
?
are known as SLAM, simultaneous localization and
?
mapping, which is a major research topic in robotics.
?
?
?
?
?
?
?
??
we have some tricks to make the search easier.
?
We can constrain the search to a limited number of poses?based on odometry information.
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
http://www.cnblogs.com/maybe2030/p/5043356.html
?
?https://blog.csdn.net/heyijia0327/article/details/40899819
?
?https://www.cnblogs.com/21207-iHome/p/5237701.html
?
?
?
?
?
?
?
?
?
?? ?
?
?? ?
?
?
so, we need to find a rotation and?translation that move the measured points to match the model points.
?
?? ? ? ??
?
The strategy of the ICP algorithm takes an optimistic?assumption that the point sets are close enough.
?
?
?
?
?
?
?
?? ? ??
?
?
?
?
知乎上網(wǎng)友的學(xué)習(xí)筆記:https://zhuanlan.zhihu.com/p/21648507?refer=robotics-learning
建圖部分的網(wǎng)友解析:https://www.cnblogs.com/ecoflex/p/9868474.html
總結(jié)
以上是生活随笔為你收集整理的机器人学习--Robotics: Estimation and Learning(宾夕法尼亚大学COURSERA课程)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 机器人学习--全局定位(阿尔伯塔大学张宏
- 下一篇: 机器人学习--卡尔曼滤波及各种滤波解析