2020-11-30 离散系统自适应控制中的一个关键性引理及证明
Assumption:
the expressions are all meaningful, i.e., there exists no case that division by zero.
Proof.
If {s(t)}\{s(t)\}{s(t)} is a bounded sequence, then by (3), {∥σ(t)∥}\{\|\sigma(t)\|\}{∥σ(t)∥} is a bounded sequence. Then by (1)(1)(1) and (2)(2)(2) it follows that
lim?t→∞∥s(t)∥=0\lim _{t \rightarrow \infty} \|s(t)\|=0t→∞lim?∥s(t)∥=0
Now assume that {∥s(t)∥}\{\|s(t)\|\}{∥s(t)∥} is unbounded. It follows that there exists a subsequence {tn}\left\{t_{n}\right\}{tn?} such that
lim?tn→∞∥s(tn)∥=∞\lim _{t_{n} \rightarrow \infty}\|s\left(t_{n}\right)\|=\infty tn?→∞lim?∥s(tn?)∥=∞and
∥s(t)∥≤∥s(tn)∥for?t≤tn\|s(t)\| \leq\|s\left(t_{n}\right)\| \quad \text { for } t \leq t_{n} ∥s(t)∥≤∥s(tn?)∥?for?t≤tn?
Now along the subsequence {tn}\left\{t_{n}\right\}{tn?}
[s(tn)Ts(tn)]1/2[b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2≥∥s(tn)∥[K+K∥σ(tn)∥2]1/2≥∥s(tn)∥K1/2+K1/2∥σ(tn)∥≥∥s(tn)∥K1/2+K1/2[C1+C2∥s(tn)∥]\begin{aligned} \frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{\left[K+K \| \sigma\left(t_{n}\right)\|^{2}\right]^{1 / 2}} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{K^{1 / 2}+K^{1 / 2}\| \sigma\left(t_{n}\right) \|} \\ & \geq \frac{\left\|s\left(t_{n}\right)\right\|}{{K^{1 / 2}}+K^{1 / 2}\left[C_{1}+C_{2}\left\|s\left(t_{n}\right)\right\|\right]} \end{aligned} [b1?(tn?)+b2?(tn?)σ(tn?)Tσ(tn?)]1/2[s(tn?)Ts(tn?)]1/2??≥[K+K∥σ(tn?)∥2]1/2∥s(tn?)∥?≥K1/2+K1/2∥σ(tn?)∥∥s(tn?)∥?≥K1/2+K1/2[C1?+C2?∥s(tn?)∥]∥s(tn?)∥??
Hence, when tnt_ntn? approaches infinity, we have
[s(tn)Ts(tn)]1/2[b1(tn)+b2(tn)σ(tn)Tσ(tn)]1/2≥1K1/2C2>0\frac{\left[s\left(t_{n}\right)^{T}s\left(t_{n}\right)\right]^{1 / 2}}{\left[b_{1}\left(t_{n}\right)+b_{2}\left(t_{n}\right) \sigma\left(t_{n}\right)^{T} \sigma\left(t_{n}\right)\right]^{1 / 2}} \geq \frac{1}{K^{1 / 2} C_{2}}>0 [b1?(tn?)+b2?(tn?)σ(tn?)Tσ(tn?)]1/2[s(tn?)Ts(tn?)]1/2?≥K1/2C2?1?>0
but this contradicts (1) and hence the assumption that {∥s(t)∥}\{\|s(t)\|\}{∥s(t)∥} is unbounded is false and the result follows.
The proof is complete.
總結
以上是生活随笔為你收集整理的2020-11-30 离散系统自适应控制中的一个关键性引理及证明的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2020-11-28 Latex相关小工
- 下一篇: 2020-12-03 The Geome