java操作es聚合操作并显示其他字段_java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用...
java連接elasticsearch 進行聚合查詢進行相應操作
一:對單個字段進行分組求和
1、表結構圖片:
根據任務id分組,分別統計出每個任務id下有多少個文字標題
1.SQL:select?id,?count(*)?as sum?from?task group?by?taskid;
java ES連接工具類
public classESClientConnectionUtil {public static TransportClient client=null;public final static String HOST = "192.168.200.211"; //服務器部署
public final static Integer PORT = 9301; //端口
public staticTransportClient getESClient(){
System.setProperty("es.set.netty.runtime.available.processors", "false");if (client == null) {synchronized (ESClientConnectionUtil.class) {try{//設置集群名稱
Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();//創建client
client = new PreBuiltTransportClient(settings).addTransportAddress(newInetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
}catch(Exception ex) {
ex.printStackTrace();
System.out.println(ex.getMessage());
}
}
}returnclient;
}public staticTransportClient getESClientConnection(){if (client == null) {
System.setProperty("es.set.netty.runtime.available.processors", "false");try{//設置集群名稱
Settings settings = Settings.builder().put("cluster.name", "es5").put("client.transport.sniff", true).build();//創建client
client = new PreBuiltTransportClient(settings).addTransportAddress(newInetSocketTransportAddress(InetAddress.getByName(HOST), PORT));
}catch(Exception ex) {
ex.printStackTrace();
System.out.println(ex.getMessage());
}
}returnclient;
}//判斷索引是否存在
public static booleanjudgeIndex(String index){
client=getESClientConnection();
IndicesAdminClient adminClient;//查詢索引是否存在
adminClient=client.admin().indices();
IndicesExistsRequest request= newIndicesExistsRequest(index);
IndicesExistsResponse responses=adminClient.exists(request).actionGet();if(responses.isExists()) {return true;
}return false;
}
}
java ES語句(根據單列進行分組求和)
//根據 任務id分組進行求和
SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");
//根據taskid進行分組統計,統計出的列別名叫sum
TermsAggregationBuilder termsBuilder= AggregationBuilders.terms("sum").field("taskid");
sbuilder.addAggregation(termsBuilder);
SearchResponse responses=sbuilder.execute().actionGet();//得到這個分組的數據集合
Terms terms = responses.getAggregations().get("sum");
List lists = new ArrayList<>();for(int i=0;i
String id =terms.getBuckets().get(i).getKey().toString();//id
Long sum =terms.getBuckets().get(i).getDocCount();//數量
System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey());
}
//分別打印出統計的數量和id值
根據多列進行分組求和
//根據 任務id分組進行求和
SearchRequestBuilder sbuilder = client.prepareSearch("hottopic").setTypes("hot");//根據taskid進行分組統計,統計出的列別名叫sum
TermsAggregationBuilder termsBuilder = AggregationBuilders.terms("sum").field("taskid");//根據第二個字段進行分組
TermsAggregationBuilder aAggregationBuilder2 = AggregationBuilders.terms("region_count").field("birthplace");
//如果存在第三個,以此類推;
sbuilder.addAggregation(termsBuilder.subAggregation(aAggregationBuilder2));
SearchResponse responses=sbuilder.execute().actionGet();//得到這個分組的數據集合
Terms terms = responses.getAggregations().get("sum");
List lists = new ArrayList<>();for(int i=0;i
String id =terms.getBuckets().get(i).getKey().toString();//id
Long sum =terms.getBuckets().get(i).getDocCount();//數量
System.out.println("=="+terms.getBuckets().get(i).getDocCount()+"------"+terms.getBuckets().get(i).getKey());
}//分別打印出統計的數量和id值
對多個field求max/min/sum/avg
SearchRequestBuilder requestBuilder =client.prepareSearch("hottopic").setTypes("hot");
//根據taskid進行分組統計,統計別名為sum
TermsAggregationBuilder aggregationBuilder1= AggregationBuilders.terms("sum").field("taskid")
//根據tasktatileid進行升序排列 .order(Order.aggregation("tasktatileid", true));
// 求tasktitleid 進行求平均數 別名為avg_title
AggregationBuilder aggregationBuilder2 = AggregationBuilders.avg("avg_title").field("tasktitleid");
//
AggregationBuilder aggregationBuilder3= AggregationBuilders.sum("sum_taskid").field("taskid");
requestBuilder.addAggregation(aggregationBuilder1.subAggregation(aggregationBuilder2).subAggregation(aggregationBuilder3));
SearchResponse response=requestBuilder.execute().actionGet();
Terms aggregation= response.getAggregations().get("sum");
Avg terms2= null;
Sum term3= null;for(Terms.Bucket bucket : aggregation.getBuckets()) {
terms2= bucket.getAggregations().get("avg_title"); //org.elasticsearch.search.aggregations.metrics.avg.InternalAvg
term3 = bucket.getAggregations().get("sum_taskid"); //org.elasticsearch.search.aggregations.metrics.sum.InternalSum
System.out.println("編號=" + bucket.getKey() + ";平均=" + terms2.getValue() + ";總=" +term3.getValue());
}
如上內容若有不恰當支持,請各位多多包涵并進行點評。技術在于溝通!
總結
以上是生活随笔為你收集整理的java操作es聚合操作并显示其他字段_java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: yamlcpp遍历_OpenCV文件输入
- 下一篇: 算法题 身高差_10个大数据处理常见算法