久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

How HBO’s Silicon Valley built “Not Hotdog” with mobile TensorFlow, Keras React Native

發布時間:2025/3/15 编程问答 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 How HBO’s Silicon Valley built “Not Hotdog” with mobile TensorFlow, Keras React Native 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

The?HBO show?Silicon Valley?released a real AI app that identifies hotdogs?—?and not hotdogs?—?like the one shown on season 4’s 4th episode (the app is?now available on Android as well as iOS!)

To achieve this, we designed a bespoke neural architecture that runs directly on your phone, and trained it with Tensorflow, Keras & Nvidia GPUs.

While the use-case is farcical, the app is an approachable example of both deep learning, and edge computing. All AI work is powered 100% by the user’s device, and images are processed without ever leaving their phone. This provides users with a snappier experience (no round trip to the cloud), offline availability, and better privacy. This also allows us to run the app at a cost of $0, even under the load of a million users, providing significant savings compared to traditional cloud-based AI approaches.

The author’s development setup with the attached eGPU used to train Not Hotdog’s?AI.

The app was developed in-house by the show, by a single developer, running on a single laptop & attached GPU, using hand-curated data. In that respect, it may provide a sense of what can be achieved today, with a limited amount of time & resources, by non-technical companies, individual developers, and hobbyists alike. In that spirit, this article attempts to give a detailed overview of steps involved to help others build their own apps.


  • The App??
  • From Prototype to Production??
    V0: Prototype??
    V1: Tensorflow, Inception & Transfer Learning??
    V2: Keras & SqueezeNet??
  • The DeepDog Architecture??
    Training??
    Running Neural Networks on Mobile Phones??
    Changing App Behavior by Injecting Neural Networks on The fly??
    What We Would Do Differently??
  • UX, DX, Biases & The Uncanny Valley of AI??

  • 1. The?App

    If you haven’t seen the show or tried the?app?(you should!), the app lets you snap a picture and then tells you whether it thinks that image is of a hotdog or not. It’s a straightforward use-case, that pays homage to recent AI research and applications, in particular ImageNet.

    While we’ve probably dedicated more engineering resources to recognizing hotdogs than anyone else, the app still fails in horrible and/or subtle ways.

    Conversely, it’s also sometimes able to recognize hotdogs in complex situations…?According to Engadget, “It’s incredible. I’ve had more success identifying food with the app in 20 minutes than I have had tagging and identifying songs with Shazam in the past two years.”


    2. From Prototype to Production

    Have you ever found yourself reading Hacker News, thinking?“they raised a 10M series A for that? I could build it in one weekend!”?This app probably feels a lot like that, and the initial prototype was indeed built in a single weekend using Google Cloud Platform’s Vision API, and React Native. But the final app we ended up releasing on the app store required months of additional (part-time) work, to deliver meaningful improvements that would be difficult for an outsider to appreciate. We spent weeks optimizing overall accuracy, training time, inference time, iterating on our setup & tooling so we could have a faster development iterations, and spent a whole weekend optimizing the user experience around iOS & Android permissions (don’t even get me started on that one).

    All too often technical blog posts or academic papers skip over this part, preferring to present the final chosen solution. In the interest of helping others learn from our mistake & choices, we will present an abridged view of the approaches that didn’t work for us, before we describe the final architecture we ended up shipping in the?next section.

    V0: Prototype

    Example image & corresponding API output from Google Cloud Vision’s documentation

    We chose React Native to build the prototype as it would give us an easy sandbox to experiment with, and would help us quickly support many devices. The experience ended up being a good one and we kept React Native for the remainder of the project: it didn’t always make things easy, and the design for the app was purposefully limited, but in the end React Native got the job done.

    The other main component we used for the prototype?—?Google Cloud’s Vision API?was quickly abandoned. There were 3 main factors:

  • First and foremost, its accuracy in recognizing hotdogs was only so-so.While it’s great at recognizing a large amount of things, it’s not so great at recognizing one thing specifically, and there were various very common examples that would fail during our experiments with it in 2016.
  • Because of its nature as a cloud service, it was necessarily slower than running on device (network lag is painful!), and unavailable offline. The idea of images leaving the device could also potentially trigger privacy & legal concerns.
  • Finally, if the app took off, the cost of running on Google Cloud could have become prohibitive.
  • For these reasons, we started experimenting with what’s trendily called “edge computing”, which for our purposes meant that after training our neural network on our laptop, we would export it and embed it directly into our mobile app, so that the neural network execution phase (or inference) would run directly inside the user’s phone.

    V1: TensorFlow, Inception & Transfer?Learning

    Through a chance encounter with?Pete Warden?of the TensorFlow team, we had become aware of its ability to run TensorFlow directly embedded on an iOS device, and started exploring that path. After React Native, TensorFlow became the second fixed part of our stack.

    It only took a day of work to integrate TensorFlow’s Objective-C++ camera example in our React Native shell. It took slightly longer to use their transfer learning script, which helps you retrain the Inception architecture to deal with a more specific image problem. Inception is the name of a family of neural architectures built by Google to deal with image recognition problems. Inception is available “pre-trained” which means the training phase has been completed and the weights are set. Most often for image recognition networks, they have been trained on ImageNet, a yearly competition to find the best neural architecture at recognizing over 20,000 different types of objects (hotdogs are one of them). However, much like Google Cloud’s Vision API, the competition rewards breadth as much as depth here, and out-of-the-box accuracy on a single one of the 20,000+ categories can be lacking. As such, retraining (also called “transfer learning”) aims to take a full-trained neural net, and retrain it to perform better on the specific problem you’d like to handle. This usually involves some degree of “forgetting”, either by excising entire layers from the stack, or by slowly erasing the network’s ability to distinguish a type of object (e.g. chairs) in favor of better accuracy at recognizing the one you care about (i.e. hotdogs).

    While the network (Inception in this case) may have been trained on the 14M images contained in ImageNet, we were able to retrain it on a just a few thousand hotdog images to get drastically enhanced hotdog recognition.

    The big advantage of transfer learning are you will get better results much faster, and with less data than if you train from scratch. A full training might take months on multiple GPUs and require millions of images, while retraining can conceivably be done in hours on a laptop with a couple thousand images.

    One of the biggest challenges we encountered was understanding exactly what should count as a hotdog and what should not. Defining what a “hotdog” is ends up being surprisingly difficult (do cut up sausages count, and if so, which kinds?) and subject to cultural interpretation.

    Similarly, the “open world” nature of our problem meant we had to deal with an almost infinite number of inputs. While certain computer-vision problems have relatively limited inputs (say, x-rays of bolts with or without a mechanical default), we had to prepare the app to be fed selfies, nature shots and any number of foods.

    Suffice to say, this approach was promising, and did lead to some improved results, however, it had to be abandoned for a couple of reasons.

    First The nature of our problem meant a strong imbalance in training data: there are many more examples of things that are not hotdogs, than things that are hotdogs. In practice this means that if you train your algorithm on 3 hotdog images and 97 non-hotdog images, and it recognizes 0% of the former but 100% of the latter, it will still score 97% accuracy by default! This was not straightforward to solve out of the box using TensorFlow’s retrain tool, and basically necessitated setting up a deep learning model from scratch, import weights, and train in a more controlled manner.

    At this point we decided to bite the bullet and get something started with Keras, a deep learning library that provides nicer, easier-to-use abstractions on top of TensorFlow, including pretty awesome training tools, and a class_weights option which is ideal to deal with this sort of dataset imbalance we were dealing with.

    We used that opportunity to try other popular neural architectures like VGG, but one problem remained. None of them could comfortably fit on an iPhone. They consumed too much memory, which led to app crashes, and would sometime takes up to 10 seconds to compute, which was not ideal from a UX standpoint. Many things were attempted to mitigate that, but in the end it these architectures were just too big to run efficiently on mobile.

    V2: Keras & SqueezeNet

    SqueezeNet vs. AlexNet, the grand-daddy of computer vision architectures. Source:?SqueezeNet paper.

    To give you a context out of time, this was roughly the mid-way point of the project. By that time, the UI was 90%+ done and very little of it was going to change. But in hindsight, the neural net was at best 20% done. We had a good sense of challenges & a good dataset, but 0 lines of the final neural architecture had been written, none of our neural code could reliably run on mobile, and even our accuracy was going to improve drastically in the weeks to come.

    The problem directly ahead of us was simple: if Inception and VGG were too big, was there a simpler, pre-trained neural network we could retrain? At the suggestion of the always excellent Jeremy P. Howard (where has that guy been all our life?), we explored Xception, Enet and SqueezeNet. We quickly settled on?SqueezeNet?due to its explicit positioning as a solution for embedded deep learning, and the availability of a pre-trained Keras model on GitHub (yay open-source).

    So how big of a difference does this make? An architecture like VGG uses about 138 million parameters (essentially the number of numbers necessary to model the neurons and values between them). Inception is already a massive improvement, requiring only 23 million parameters. SqueezeNet, in comparison only requires 1.25 million.

    This has two advantages:

  • During the training phase, it’s much faster to train a smaller network. There’s less parameters to map in memory, which means you can parallelize your training a bit more (larger batch size), and the network will converge (i.e., approximate the idealized mathematical function) more quickly.
  • In production, the model is much smaller and much faster. SqueezeNet would require less than 10MB of RAM, while something like Inception requires 100MB or more. The delta is huge, and particularly important when running on mobile devices that may have less than 100MB of RAM available to run your app. Smaller networks also compute a result much faster than bigger ones.
  • There are tradeoffs of course:

  • A smaller neural architecture has less available “memory”: it will not be as efficient at handling complex cases (such as recognizing 20,000 different objects), or even handling complex subcases (like say, appreciating the difference between a New York-style hotdog and a Chicago-style hotdog)
    As a corollary, smaller networks are usually less accurate overall than big ones. When trying to recognize ImageNet’s 20,000 different objects, SqueezeNet will only score around 58%, whereas Vgg will be accurate 72% of the time.
  • It’s harder to use transfer learning on a small network. Technically, there is nothing preventing us from using the same approach we used with Inception & Vgg, have SqueezeNet “forget” a little bit, and retrain it specifically for hotdogs vs. not hotdogs. In practice, we found it hard to tune the learning rate, and results were always more disappointing than training SqueezeNet from scratch. This could also be caused or worsened by the open-world nature of our problem.
  • Supposedly, smaller networks rarely overfit, but this happened to us with several “small” architectures. Overfitting means that your network specializes too much, and instead of learning how to recognize hotdogs in general, it learns to recognize exactly & only the specific hotdog images you were training with. A human analogue would be visually-memorizing exactly which of the images presented to you were of a “hotdog” without abstracting that a hotdog is usually composed of a sausage in a bun, possibly with condiments, etc. If you were presented with a brand new hotdog image that wasn’t one of the ones you memorized, you would be inclined to say it’s not a hotdog. Because smaller networks usually have less “memory”, it’s easy to see why it would be harder for them to specialize. But in several cases, our small networks’ accuracy jumped up to 99% and suddenly became unable to recognize images it had not seen in training. This usually disappeared once we added enough data augmentation (stretching/distorting input images semi-randomly so instead of being trained 1,00 times on each of the 1,000 images, the network is trained on meaningful variations of the 1,000 images making it unlikely the network will memory exactly the 1,000 images and instead will have to learn to recognize the “features” of a hotdog (bun, sausage, condiments, etc.) while staying fluid/general enough not to get overly attached to specific pixel values of specific images in the training set.
  • Data Augmentation example from the?Keras?Blog.

    During this phase, we started experimenting with tuning the neural network architecture. In particular, we started using Batch Normalization and trying different activation functions.

    • Batch Normalization helps your network learn faster by “smoothing” the values at various stages in the stack. Exactly why this works is seemingly not well-understood yet, but it has the effect of helping your network converge much faster, meaning it achieves higher accuracy with less training, or higher accuracy after the same amount of training, often dramatically so.
    • Activation functions are the internal mathematical functions determining whether your “neurons” activate or not. Many papers still use ReLU, the Rectified Linear Unit, but we had our best results using ELU instead.

    After adding Batch Normalization and ELU to SqueezeNet, we were able to train neural network that achieve 90%+ accuracy when training from scratch, however, they were relatively brittle meaning the same network would overfit in some cases, or underfit in others when confronted to real-life testing. Even adding more examples to the dataset and playing with data augmentation failed to deliver a network that met expectations.

    So while this phase was promising, and for the first time gave us a functioning app that could work entirely on an iPhone, in less than a second, we eventually moved to our 4th & final architecture.


    3. The DeepDog Architecture

    Design

    Our final architecture was spurred in large part by the publication on April 17 of Google’s?MobileNets paper, promising a new neural architecture with Inception-like accuracy on simple problems like ours, with only 4M or so parameters. This meant it sat in an interesting sweet spot between a SqueezeNet that had maybe been overly simplistic for our purposes, and the possibly overwrought elephant-trying-to-squeeze-in-a-tutu of using Inception or VGG on Mobile. The paper introduced some capacity to tune the size & complexity of network specifically to trade memory/CPU consumption against accuracy, which was very much top of mind for us at the time.

    With less than a month to go before the app had to launch we endeavored to reproduce the paper’s results. This was entirely anticlimactic as within a day of the paper being published a?Keras implementation?was already offered publicly on GitHub by Refik Can Malli, a student at Istanbul Technical University, whose work we had already benefitted from when we took inspiration from his excellent Keras SqueezeNet implementation. The depth & openness of the deep learning community, and the presence of talented minds like R.C. is what makes deep learning viable for applications today?—?but they also make working in this field more thrilling than any tech trend we’ve been involved with.

    Our final architecture ended up making significant departures from the MobileNets architecture or from convention, in particular:

    • We do not use Batch Normalization & Activation between depthwise and pointwise convolutions, because the XCeption paper (which discussed depthwise convolutions in detail) seemed to indicate it would actually lead to less accuracy in architecture of this type (as?helpfully pointed out?by the author of the QuickNet paper on Reddit). This also has the benefit of reducing the network size.
    • We use ELU instead of ReLU. Just like with our SqueezeNet experiments, it provided superior convergence speed & final accuracy when compared to ReLU
    • We did not use PELU. While promising, this activation function seemed to fall into a binary state whenever we tried to use it. Instead of gradually improving, our network’s accuracy would alternate between ~0% and ~100% from one batch to the next. It’s unclear why this happened, and might just come down to an implementation error or user error. Fusing the width/height axes of our images had no effect.
    • We did not use SELU. A short investigation between the iOS & Android release led to results very similar to PELU. It’s our suspicion that SELU should not be used in isolation as a sort of activation function silver bullet, but rather?—?as the paper’s title implies?—?as part of a narrowly-defined SNN architecture.
    • We maintain the use of Batch Normalization with ELU. There are many indications that this should be unnecessary, however, every experiment we ran without Batch Normalization completely failed to converge. This could be due to the small size of our architecture.
    • We used Batch Normalization?before?the activation. While this is a?subject of some debate?these days, our experiments placing BN after activation on small networks failed to converge as well.
    • To optimize the network we used?Cyclical Learning Rates?and (fellow student) Brad Kenstler’s excellent?Keras implementation. CLRs take the guessing game out of finding the optimal learning rate for your training. Even more importantly by adjusting the learning rate both up & down throughout your training, they help achieve a final accuracy that’s in our experience better than a traditional optimizer. For both of these reasons, we can’t conceive using anything else thant CLRs to train a neural network in the future.
    • For what it’s worth, we saw no need to adjust the?α?or?ρ?values from the MobileNets architecture. Our model was small enough for our purposes at?α?= 1, and computation was fast enough at?ρ?= 1, and we preferred to focus on achieving maximum accuracy. However, this could be helpful when attempting to run on older mobile devices, or embedded platforms.

    So how does this stack work exactly? Deep Learning often gets a bad rap for being a “black box”, and while it’s true many components of it can be mysterious, the networks we use often leak information about how some of their magic work. We can look at the layers of this stack and how they activate on specific input images, giving us a sense of each layer’s ability to recognize sausage, buns, or other particularly salient hotdog features.

    Training

    Data quality was of the utmost importance. A neural network can only be as good as the data that trained it, and improving training set quality was probably one of the top 3 things we spent time on during this project. The key things we did to improve this were:

    • Sourcing more images, and more varied images (height/width, background, lighting conditions, cultural differences, perspective, composition, etc.)
    • Matching image types to expected production inputs. Our guess was people would mostly try to photograph actual hotdogs, other foods, or would sometimes try to trick the system with random objects, so our dataset reflected that.
    • Give lots of examples of things that are similar that may trip your network. Some of the things that look most similar to hotdogs are other foods (such as hamburgers, sandwiches, or in the case of naked hotdogs, baby carrots or even cooked cherry tomatoes). Our dataset reflected that.
    • Expect distortions: in mobile situations, most photos will be worse than the “average” picture taken with a DLSR or in perfect lighting conditions. Mobile photos are dim, noisy, taken at an angle. Aggressive data augmentation was key to counter this.
    • Additionally we figured that users may lack access to real hotdogs, so may try photographing hotdogs from Google search results, which led to its own types of distortion (skewing if photo is taken at angle, flash reflection on the screen visible moiré effect caused by taking a picture of an LCD screen with a mobile camera). These specific distortion had an almost uncanny ability to trick our network, not unlike?recently-published papers on Convolutional Network’s (lack of) resistance to noise. Using Keras’ channel shift feature resolved most of these issues.
    Example distortion introduced by moiré and a flash. Original photo:?Wikimedia Commons.
    • Some edge cases were hard to catch. In particular, images of hotdogs taken with a soft focus or with lots of bokeh in the background would sometimes trick our neural network. This was hard to defend against as a) there just aren’t that many photographs of hotdogs in soft focus (we get hungry just thinking about it) and b) it could be damaging to spend too much of our network’s capacity training for soft focus, when realistically most images taken with a mobile phone will not have that feature. We chose to leave this largely unaddressed as a result.

    The final composition of our dataset was 150k images, of which only 3k were hotdogs: there are only so many hotdogs you can look at, but there are many not hotdogs to look at. The 49:1 imbalance was dealt with by saying a Keras class weight of 49:1 in favor of hotdogs. Of the remaining 147k images, most were of food, with just 3k photos of non-food items, to help the network generalize a bit more and not get tricked into seeing a hotdog if presented with an image of a human in a red outfit.

    Our data augmentation rules were as follows:

    • We applied rotations within ±135 degrees?—?significantly more than average, because we coded the application to disregard phone orientation.
    • Height and width shifts of 20%
    • Shear range of 30%
    • Zoom range of 10%
    • Channel shifts of 20%
    • Random horizontal flips to help the network generalize

    These numbers were derived intuitively, based on experiments and our understanding of the real-life usage of our app, as opposed to careful experimentation.

    The final key to our data pipeline was using Patrick Rodriguez’s?multiprocess image data generator?for Keras. While Keras does have a built-in multi-threaded and multiprocess implementation, we found Patrick’s library to be consistently faster in our experiments, for reasons we did not have time to investigate. This library cut our training time to a third of what it used to be.

    The network was trained using a 2015 MacBook Pro and attached external GPU (eGPU), specifically an Nvidia GTX 980 Ti (we’d probably buy a 1080 Ti if we were starting today). We were able to train the network on batches of 128 images at a time. The network was trained for a total of 240 epochs, meaning we ran all 150k images through the network 240 times. This took about 80 hours.

    We trained the network in 3 phases:

    • Phase 1 ran for 112 epochs (7 full CLR cycles with a step size of 8 epochs), with a learning rate between 0.005 and 0.03, on a triangular 2 policy (meaning the max learning rate was halved every 16 epochs).
    • Phase 2 ran for 64 more epochs (4 CLR cycles with a step size of 8 epochs), with a learning rate between 0.0004 and 0.0045, on a triangular 2 policy.
    • Phase 3 ran for 64 more epochs (4 CLR cycles with a step size of 8 epochs), with a learning rate between 0.000015 and 0.0002, on a triangular 2 policy.
    UPDATED: a previous version of this chart contained inaccurate learning?rates.

    While learning rates were identified by running the linear experiment recommended by the CLR paper, they seem to intuitively make sense, in that the max for each phase is within a factor of 2 of the previous minimum, which is aligned with the industry standard recommendation of halving your learning rate if your accuracy plateaus during training.

    In the interest of time we performed some training runs on a?PaperspaceP5000 instance running Ubuntu. In those cases, we were able to double the batch size, and found that optimal learning rates for each phase were roughly double as well.

    Running Neural Networks on Mobile?Phones

    Even having designed a relatively compact neural architecture, and having trained it to handle situations it may find in a mobile context, we had a lot of work left to make it run properly. Trying to run a top-of-the-line neural net architecture out of the box can quickly burns hundreds megabytes of RAM, which few mobile devices can spare today. Beyond network optimizations, it turns out the way you handle images or even load TensorFlow itself can have a huge impact on how quickly your network runs, how little RAM it uses, and how crash-free the experience will be for your users.

    This was maybe the most mysterious part of this project. Relatively little information can be found about it, possibly due to the dearth of production deep learning applications running on mobile devices as of today. However, we must commend the Tensorflow team, and particularly Pete Warden, Andrew Harp and Chad Whipkey for the existing documentation and their kindness in answering our inquiries.

    • Rounding the weights of our network helped compressed the network to ~25% of its size. Essentially instead of using the arbitrary stock values derived from your training, this optimization picks the N most common values and sets all parameters in your network to these values, which drastically reduces the size of your network when zipped. This however has no impact on the uncompressed app size, or memory usage. We did not ship this improvement to production as the network was small enough for our purposes, and we did not have time to quantify how much of a hit the rounding would have on the accuracy of the app.
    • Optimize the TensorFlow lib by compiling it for production with -Os
    • Removing unnecessary ops from the TensorFlow lib: TensorFlow is in some respect a virtual machine, able to interpret a number or arbitrary TensorFlow operations: addition, multiplications, concatenations, etc. You can?get significant weight (and memory) savings?by removing unnecessary ops from the TensorFlow library you compile for ios.
    • Other improvements might be possible. For example unrelated work by the author yielded 1MB improvement in Android binary size with a?relatively simple trick, so there may be more areas of TensorFlow’s iOS code that can be optimized for your purposes.

    Instead of using TensorFlow on iOS, we looked at using Apple’s built-in deep learning libraries instead (BNNS, MPSCNN and later on, CoreML). We would have designed the network in Keras, trained it with TensorFlow, exported all the weight values, re-implemented the network with BNNS or MPSCNN (or?imported it via CoreML), and loaded the parameters into that new implementation. However, the biggest obstacle was that these new Apple libraries are only available on iOS 10+, and we wanted to support older versions of iOS. As iOS 10+ adoption and these frameworks continue to improve, there may not be a case for using TensorFlow on device in the near future.

    Changing App Behavior by Injecting Neural Networks on The?fly

    If you think injecting JavaScript into your app on the fly is cool, try injecting neural nets into your app! The last production trick we used was to leverage?CodePush?and Apple’s relatively permissive terms of service, to live-inject new versions of our neural networks after submission to the app store. While this was mostly done to help us quickly deliver accuracy improvements to our users after release, you could conceivably use this approach to drastically expand or alter the feature set of your app without going through an app store review again.

    What We Would Do Differently

    There are a lot of things that didn’t work or we didn’t have time to do, and these are the ideas we’d investigate in the future:

    • More carefully tune our data-augmentation parameters.
    • Measure accuracy end-to-end, i.e. the final determination made by the app abstracting things like whether our app has 2 or many more categories, what the final threshold for hotdog recognition is (we ended up having the app say “hotdog” if recognition is above 0.90 as opposed to the default of 0.5), after weights are rounded, etc.
    • Building a feedback mechanism into the app?—?to let users vent frustration if results are erroneous, or actively improve the neural network.
    • Use a larger resolution for image recognition than 224 x 224 pixels?—?essentially using a MobileNets?ρ?value?> 1.0

    UX/DX, Biases, and The Uncanny Valley of?AI

    Finally, we’d be remiss not to mention the obvious and important influence of User Experience, Developer Experience and built-in biases in developing an AI app. Each probably deserve their own post (or their own book) but here are the very concrete impacts of these 3 things in our experience.

    UX (User Experience)?is arguably more critical at every stage of the development of an AI app than for a traditional application.?There are no Deep Learning algorithms that will give you perfect results right now, but there are many situations where the right mix of Deep Learning + UX will lead to results that are indistinguishable from perfect. Proper UX expectations are irreplaceable when it comes to setting developers on the right path to design their neural networks, setting the proper expectations for users when they use the app, and gracefully handling the inevitable AI failures.?Building AI apps without a UX-first mindset is like training a neural net without Stochastic Gradient Descent: you will end up stuck in the local minima of the?Uncanny Valley?on your way to building the perfect AI use-case.

    Source:?New Scientist.

    DX (Developer Experience)?is extremely important as well, because deep learning training time is the new horsing around while waiting for your program to compile. We suggest you heavily favor DX first (hence Keras), as it’s always possible to optimize runtime for later runs (manual GPU parallelization, multi-process data augmentation, TensorFlow pipeline, even re-implementing for caffe2 / pyTorch).

    Even projects with relatively obtuse APIs & documentation like TensorFlow greatly improve DX by providing a highly-tested, highly-used, well-maintained environment for training & running neural networks.

    For the same reason, it’s hard to beat both the cost as well as the flexibility of having your own local GPU for development. Being able to look at / edit images locally, edit code with your preferred tool without delays greatly improves the development quality & speed of building AI projects.

    Most AI apps will hit more critical?cultural biases?than ours, but as an example, even our straightforward use-case, caught us flat-footed with built-in biases in our initial dataset, that made the app unable to recognize French-style hotdogs, Asian hotdogs, and more oddities we did not have immediate personal experience with. It’s critical to remember that AI do not make “better” decisions than humans?—?they are infected by the same human biases we fall prey to, via the training sets humans provide.


    原文: https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3

    總結

    以上是生活随笔為你收集整理的How HBO’s Silicon Valley built “Not Hotdog” with mobile TensorFlow, Keras React Native的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    亚洲 另类 在线 欧美 制服 | 色综合视频一区二区三区 | 日本熟妇浓毛 | 国产精品爱久久久久久久 | 国产97色在线 | 免 | 亚洲日韩av片在线观看 | 97久久国产亚洲精品超碰热 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产成人无码区免费内射一片色欲 | 成人免费视频在线观看 | 亚洲乱亚洲乱妇50p | 国产综合色产在线精品 | 国产精品久久久 | 亚欧洲精品在线视频免费观看 | 色综合久久88色综合天天 | 国产av一区二区精品久久凹凸 | 西西人体www44rt大胆高清 | 鲁一鲁av2019在线 | 人妻与老人中文字幕 | 在线a亚洲视频播放在线观看 | 久久亚洲日韩精品一区二区三区 | 精品一区二区三区波多野结衣 | 日本va欧美va欧美va精品 | 日本一本二本三区免费 | 免费无码的av片在线观看 | 亚洲国产精品成人久久蜜臀 | 成熟女人特级毛片www免费 | 图片区 小说区 区 亚洲五月 | 免费中文字幕日韩欧美 | 无码帝国www无码专区色综合 | 久久99精品久久久久久 | 亚洲中文字幕成人无码 | 久久久精品人妻久久影视 | 亚洲精品国产精品乱码不卡 | av人摸人人人澡人人超碰下载 | 欧美日韩一区二区三区自拍 | 亚洲精品久久久久久一区二区 | 亚洲男人av天堂午夜在 | 国产真人无遮挡作爱免费视频 | 国产人成高清在线视频99最全资源 | 成 人 免费观看网站 | 人人超人人超碰超国产 | 精品国偷自产在线 | 97精品国产97久久久久久免费 | 天天躁日日躁狠狠躁免费麻豆 | 欧美 丝袜 自拍 制服 另类 | 日本在线高清不卡免费播放 | 亚洲熟妇色xxxxx欧美老妇y | 女人被爽到呻吟gif动态图视看 | 高清国产亚洲精品自在久久 | 亚洲精品综合一区二区三区在线 | 少妇激情av一区二区 | 97精品人妻一区二区三区香蕉 | 国产 精品 自在自线 | 欧洲精品码一区二区三区免费看 | 国产成人精品优优av | 日本爽爽爽爽爽爽在线观看免 | 久久精品人人做人人综合试看 | 在线亚洲高清揄拍自拍一品区 | 99久久99久久免费精品蜜桃 | 亚洲男人av香蕉爽爽爽爽 | 精品无码国产自产拍在线观看蜜 | а√资源新版在线天堂 | 久久国产精品二国产精品 | aⅴ亚洲 日韩 色 图网站 播放 | 色诱久久久久综合网ywww | 精品国精品国产自在久国产87 | 娇妻被黑人粗大高潮白浆 | 女人色极品影院 | 国产成人久久精品流白浆 | 国产av一区二区三区最新精品 | 性色欲网站人妻丰满中文久久不卡 | 无遮挡国产高潮视频免费观看 | 少妇被黑人到高潮喷出白浆 | 色噜噜亚洲男人的天堂 | 免费国产成人高清在线观看网站 | 欧美高清在线精品一区 | 999久久久国产精品消防器材 | 丰满人妻一区二区三区免费视频 | 成熟妇人a片免费看网站 | 国产精品高潮呻吟av久久4虎 | 亚洲中文字幕乱码av波多ji | 少妇一晚三次一区二区三区 | 内射老妇bbwx0c0ck | 美女扒开屁股让男人桶 | 少妇无码吹潮 | 亚洲男人av香蕉爽爽爽爽 | 2019午夜福利不卡片在线 | 人妻少妇精品无码专区二区 | 人人妻人人澡人人爽人人精品 | 性色欲网站人妻丰满中文久久不卡 | 欧美午夜特黄aaaaaa片 | 国产成人一区二区三区别 | 国产av一区二区三区最新精品 | 麻豆av传媒蜜桃天美传媒 | 成人女人看片免费视频放人 | 日韩少妇内射免费播放 | 麻豆国产人妻欲求不满谁演的 | 久久久久久亚洲精品a片成人 | 亚洲中文无码av永久不收费 | 久久久久成人精品免费播放动漫 | 久久99精品久久久久久动态图 | 欧美日韩久久久精品a片 | 98国产精品综合一区二区三区 | 一区二区三区乱码在线 | 欧洲 | 99er热精品视频 | 蜜桃视频韩日免费播放 | 纯爱无遮挡h肉动漫在线播放 | 性欧美videos高清精品 | 美女极度色诱视频国产 | 2020最新国产自产精品 | 欧美丰满熟妇xxxx性ppx人交 | 午夜免费福利小电影 | 成人无码精品一区二区三区 | 性做久久久久久久久 | 亚洲一区二区三区播放 | 小sao货水好多真紧h无码视频 | 亚洲精品成人av在线 | 亚洲狠狠婷婷综合久久 | 在线а√天堂中文官网 | 国产成人无码a区在线观看视频app | 久久综合色之久久综合 | 天天综合网天天综合色 | 国产av一区二区精品久久凹凸 | 久久无码专区国产精品s | 国产一区二区三区四区五区加勒比 | 免费中文字幕日韩欧美 | 国产真实夫妇视频 | 性开放的女人aaa片 | 欧美国产日产一区二区 | 久久精品国产精品国产精品污 | 久久久久se色偷偷亚洲精品av | 亚洲色欲色欲天天天www | 亚洲最大成人网站 | 99re在线播放 | 麻豆人妻少妇精品无码专区 | 无码av中文字幕免费放 | 免费看男女做好爽好硬视频 | 中文字幕av日韩精品一区二区 | 日欧一片内射va在线影院 | 亚洲高清偷拍一区二区三区 | 国产办公室秘书无码精品99 | 久久久婷婷五月亚洲97号色 | 欧美亚洲国产一区二区三区 | 无码国内精品人妻少妇 | 老熟女重囗味hdxx69 | 国产精品成人av在线观看 | 色综合久久久久综合一本到桃花网 | 色综合视频一区二区三区 | 成人无码视频免费播放 | 国内精品一区二区三区不卡 | 夜夜影院未满十八勿进 | 欧美乱妇无乱码大黄a片 | 国产在线一区二区三区四区五区 | 成人无码视频在线观看网站 | 久久无码中文字幕免费影院蜜桃 | 女人被男人躁得好爽免费视频 | 人妻插b视频一区二区三区 | 国产精品无码久久av | 5858s亚洲色大成网站www | 黑人玩弄人妻中文在线 | 爽爽影院免费观看 | 国产精品无码永久免费888 | 国产欧美精品一区二区三区 | 无码人妻久久一区二区三区不卡 | 国产精品无码永久免费888 | 四虎国产精品免费久久 | 久久伊人色av天堂九九小黄鸭 | 搡女人真爽免费视频大全 | 国内少妇偷人精品视频免费 | 无码中文字幕色专区 | 天堂一区人妻无码 | 乱人伦人妻中文字幕无码 | 国产女主播喷水视频在线观看 | 好爽又高潮了毛片免费下载 | 日本在线高清不卡免费播放 | 欧美freesex黑人又粗又大 | 国产区女主播在线观看 | 中文无码伦av中文字幕 | 亚洲精品国产第一综合99久久 | 国产色xx群视频射精 | 亚洲成av人在线观看网址 | 亚洲一区二区三区无码久久 | 日日鲁鲁鲁夜夜爽爽狠狠 | 中文字幕中文有码在线 | 国产av无码专区亚洲awww | 中文字幕亚洲情99在线 | 成人三级无码视频在线观看 | 丁香花在线影院观看在线播放 | 亚洲国产精品美女久久久久 | 国产亚洲视频中文字幕97精品 | 国产熟妇另类久久久久 | 国产av人人夜夜澡人人爽麻豆 | аⅴ资源天堂资源库在线 | 日日麻批免费40分钟无码 | 99久久婷婷国产综合精品青草免费 | 国产 浪潮av性色四虎 | 国产精品国产三级国产专播 | 牲欲强的熟妇农村老妇女视频 | 国产人妖乱国产精品人妖 | 麻豆精品国产精华精华液好用吗 | 欧美老妇交乱视频在线观看 | 老子影院午夜伦不卡 | 国产性生交xxxxx无码 | 久久综合色之久久综合 | 国产亚洲精品久久久久久久久动漫 | 国产在线精品一区二区三区直播 | 久久国产精品萌白酱免费 | 欧美日韩亚洲国产精品 | 强开小婷嫩苞又嫩又紧视频 | 国产在线无码精品电影网 | 国产免费久久精品国产传媒 | 97无码免费人妻超级碰碰夜夜 | 四虎国产精品免费久久 | 无套内射视频囯产 | 亚洲乱亚洲乱妇50p | 欧美一区二区三区 | 亚洲国产精品一区二区美利坚 | 国产香蕉尹人综合在线观看 | 高中生自慰www网站 | 欧美日韩一区二区综合 | 无码任你躁久久久久久久 | 久久久久亚洲精品中文字幕 | 欧美变态另类xxxx | 中国女人内谢69xxxxxa片 | 无码毛片视频一区二区本码 | 亚洲日本va午夜在线电影 | 欧美丰满熟妇xxxx性ppx人交 | 久久久精品人妻久久影视 | 99国产精品白浆在线观看免费 | 无码一区二区三区在线观看 | 成熟女人特级毛片www免费 | 亚洲成熟女人毛毛耸耸多 | 日本xxxx色视频在线观看免费 | 国产精品亚洲а∨无码播放麻豆 | 麻豆果冻传媒2021精品传媒一区下载 | 国产97在线 | 亚洲 | 少妇人妻偷人精品无码视频 | 俺去俺来也在线www色官网 | 国产成人无码区免费内射一片色欲 | 亚洲欧美精品aaaaaa片 | 99精品久久毛片a片 | 国产精品爱久久久久久久 | 精品无码av一区二区三区 | 国产精品嫩草久久久久 | 特大黑人娇小亚洲女 | 国产色视频一区二区三区 | 鲁大师影院在线观看 | 在线观看欧美一区二区三区 | 熟女体下毛毛黑森林 | 色五月五月丁香亚洲综合网 | 午夜无码区在线观看 | 2020久久超碰国产精品最新 | 亚洲人成网站免费播放 | 国产乱子伦视频在线播放 | 伊人久久大香线焦av综合影院 | 激情综合激情五月俺也去 | 少妇性l交大片欧洲热妇乱xxx | 亚洲成a人片在线观看无码 | 熟妇人妻无码xxx视频 | 四虎永久在线精品免费网址 | 国产精品美女久久久 | 四虎影视成人永久免费观看视频 | 亚洲成a人片在线观看无码3d | 国产超碰人人爽人人做人人添 | 无码av最新清无码专区吞精 | 扒开双腿疯狂进出爽爽爽视频 | 久久精品国产亚洲精品 | 精品国产一区二区三区av 性色 | 国产精品无码mv在线观看 | 牲欲强的熟妇农村老妇女视频 | 在线播放无码字幕亚洲 | 人妻熟女一区 | 亚洲の无码国产の无码影院 | 无码av免费一区二区三区试看 | 97精品国产97久久久久久免费 | 天海翼激烈高潮到腰振不止 | 久久无码专区国产精品s | 呦交小u女精品视频 | 欧美人与牲动交xxxx | 国产亚洲美女精品久久久2020 | 波多野结衣aⅴ在线 | 亚洲日韩av片在线观看 | 国产午夜无码精品免费看 | 国产精品久免费的黄网站 | 又色又爽又黄的美女裸体网站 | 露脸叫床粗话东北少妇 | 亚洲熟妇色xxxxx欧美老妇 | 久久久久久久女国产乱让韩 | 国产精品亚洲专区无码不卡 | 免费无码午夜福利片69 | 久久久久国色av免费观看性色 | 成人av无码一区二区三区 | 国产精品久久久久久亚洲影视内衣 | 久久天天躁狠狠躁夜夜免费观看 | 少妇被粗大的猛进出69影院 | 亚洲性无码av中文字幕 | 免费人成在线观看网站 | 国产成人午夜福利在线播放 | 熟妇人妻激情偷爽文 | 精品无人区无码乱码毛片国产 | 纯爱无遮挡h肉动漫在线播放 | 奇米影视7777久久精品人人爽 | 国产极品美女高潮无套在线观看 | 成 人 网 站国产免费观看 | 免费播放一区二区三区 | 成 人影片 免费观看 | 嫩b人妻精品一区二区三区 | 亚洲精品国偷拍自产在线麻豆 | 久久精品国产一区二区三区肥胖 | 97se亚洲精品一区 | 高清不卡一区二区三区 | 内射欧美老妇wbb | 亚洲一区二区三区含羞草 | 亚洲国产精品无码久久久久高潮 | 中文字幕人妻无码一区二区三区 | 无码国产色欲xxxxx视频 | 日本精品人妻无码77777 天堂一区人妻无码 | 国产精品人人爽人人做我的可爱 | 国产偷国产偷精品高清尤物 | 天堂а√在线地址中文在线 | 亚洲综合无码一区二区三区 | 欧美xxxx黑人又粗又长 | 国产精品美女久久久 | 精品无码成人片一区二区98 | 久久久久av无码免费网 | 麻豆md0077饥渴少妇 | 午夜不卡av免费 一本久久a久久精品vr综合 | 亚洲乱亚洲乱妇50p | 国产午夜福利100集发布 | 人妻少妇精品视频专区 | 乱人伦人妻中文字幕无码 | 亚洲中文字幕乱码av波多ji | 男女猛烈xx00免费视频试看 | 亚洲日韩一区二区 | 99精品国产综合久久久久五月天 | 荫蒂添的好舒服视频囗交 | v一区无码内射国产 | 曰韩无码二三区中文字幕 | 精品少妇爆乳无码av无码专区 | 中文字幕乱妇无码av在线 | 妺妺窝人体色www婷婷 | 熟女少妇在线视频播放 | 精品无人区无码乱码毛片国产 | 中文字幕av伊人av无码av | 亚洲 日韩 欧美 成人 在线观看 | 国产精品人妻一区二区三区四 | 无码av岛国片在线播放 | 国产乱人无码伦av在线a | 日韩亚洲欧美中文高清在线 | 色综合视频一区二区三区 | 97无码免费人妻超级碰碰夜夜 | 亚洲春色在线视频 | 九九综合va免费看 | 少女韩国电视剧在线观看完整 | 欧洲精品码一区二区三区免费看 | 国产精品va在线播放 | 国产av剧情md精品麻豆 | 红桃av一区二区三区在线无码av | 中国女人内谢69xxxxxa片 | 国产后入清纯学生妹 | 精品欧美一区二区三区久久久 | 亚洲中文字幕无码中文字在线 | 亚无码乱人伦一区二区 | 性生交大片免费看女人按摩摩 | 亚洲国产综合无码一区 | 欧美人与禽猛交狂配 | 日本大乳高潮视频在线观看 | 亚洲国产av美女网站 | 特大黑人娇小亚洲女 | 丰满少妇高潮惨叫视频 | √天堂中文官网8在线 | 久久精品中文字幕大胸 | 亚洲s码欧洲m码国产av | 老司机亚洲精品影院无码 | 久久婷婷五月综合色国产香蕉 | 婷婷六月久久综合丁香 | 骚片av蜜桃精品一区 | 亚洲国产成人av在线观看 | 国产艳妇av在线观看果冻传媒 | 全黄性性激高免费视频 | 熟妇人妻激情偷爽文 | 国产熟妇高潮叫床视频播放 | 国内精品久久久久久中文字幕 | 精品无码一区二区三区爱欲 | 日日夜夜撸啊撸 | 极品嫩模高潮叫床 | 日本欧美一区二区三区乱码 | 欧美35页视频在线观看 | 欧美性生交xxxxx久久久 | 日韩无套无码精品 | 精品人妻av区 | 人妻少妇精品视频专区 | 中文字幕日韩精品一区二区三区 | 性生交片免费无码看人 | 亚洲精品一区三区三区在线观看 | 国产99久久精品一区二区 | 成年美女黄网站色大免费视频 | 曰韩无码二三区中文字幕 | 强辱丰满人妻hd中文字幕 | 综合人妻久久一区二区精品 | 国产av一区二区精品久久凹凸 | 久久午夜无码鲁丝片午夜精品 | 亚洲一区二区三区偷拍女厕 | 麻豆国产人妻欲求不满 | 精品偷拍一区二区三区在线看 | 日韩精品一区二区av在线 | 天天做天天爱天天爽综合网 | 亚洲色偷偷偷综合网 | 精品久久久久久亚洲精品 | 久久国产自偷自偷免费一区调 | 亚洲精品美女久久久久久久 | 动漫av网站免费观看 | 色综合久久久无码中文字幕 | 日韩亚洲欧美精品综合 | 少妇性俱乐部纵欲狂欢电影 | 未满小14洗澡无码视频网站 | 人妻有码中文字幕在线 | 99riav国产精品视频 | 最新版天堂资源中文官网 | 99久久人妻精品免费二区 | 色综合久久久久综合一本到桃花网 | 国产午夜手机精彩视频 | 成人精品视频一区二区三区尤物 | 久久久久人妻一区精品色欧美 | 日韩精品一区二区av在线 | 精品欧美一区二区三区久久久 | 麻豆av传媒蜜桃天美传媒 | 亚洲日韩中文字幕在线播放 | 亚洲成av人片天堂网无码】 | 亚洲综合色区中文字幕 | 波多野结衣av一区二区全免费观看 | 亚洲精品综合一区二区三区在线 | 人妻有码中文字幕在线 | 国产一区二区不卡老阿姨 | 亚洲精品中文字幕久久久久 | 中文字幕精品av一区二区五区 | 国产一区二区三区四区五区加勒比 | 久久这里只有精品视频9 | 精品日本一区二区三区在线观看 | 国内精品人妻无码久久久影院 | 成人毛片一区二区 | 国产精品无码一区二区桃花视频 | 日本成熟视频免费视频 | 亚洲精品久久久久久久久久久 | 性做久久久久久久久 | 55夜色66夜色国产精品视频 | 麻豆精品国产精华精华液好用吗 | 国产卡一卡二卡三 | 成年美女黄网站色大免费全看 | 精品乱子伦一区二区三区 | 国产疯狂伦交大片 | 在线观看免费人成视频 | 国产精品亚洲一区二区三区喷水 | 国产激情无码一区二区 | av无码电影一区二区三区 | 老司机亚洲精品影院 | 99精品视频在线观看免费 | 青青草原综合久久大伊人精品 | 高清不卡一区二区三区 | 日本又色又爽又黄的a片18禁 | 亚洲欧美精品aaaaaa片 | 97se亚洲精品一区 | 人人妻在人人 | 国产美女精品一区二区三区 | 久久午夜夜伦鲁鲁片无码免费 | 色窝窝无码一区二区三区色欲 | 性啪啪chinese东北女人 | 蜜臀aⅴ国产精品久久久国产老师 | 中文无码成人免费视频在线观看 | 国产特级毛片aaaaaaa高清 | 亚洲欧美色中文字幕在线 | 国产精品久久久久久亚洲影视内衣 | 久久久精品人妻久久影视 | 又粗又大又硬又长又爽 | 亚洲中文字幕在线观看 | 奇米影视888欧美在线观看 | 人人妻人人澡人人爽欧美一区 | 狂野欧美激情性xxxx | 欧美精品一区二区精品久久 | 亚洲日韩av一区二区三区四区 | 欧美亚洲日韩国产人成在线播放 | 日产精品高潮呻吟av久久 | 亚洲色欲久久久综合网东京热 | 亚洲日韩精品欧美一区二区 | 无码人妻精品一区二区三区下载 | 女人高潮内射99精品 | 精品久久久中文字幕人妻 | 婷婷五月综合缴情在线视频 | 人妻互换免费中文字幕 | 97人妻精品一区二区三区 | 动漫av一区二区在线观看 | 人妻有码中文字幕在线 | 无码av最新清无码专区吞精 | 中文毛片无遮挡高清免费 | 国内少妇偷人精品视频 | 国产三级精品三级男人的天堂 | 午夜丰满少妇性开放视频 | 色综合久久久无码网中文 | 亚洲午夜久久久影院 | 亚洲中文字幕久久无码 | 97夜夜澡人人双人人人喊 | 欧美色就是色 | 少妇人妻av毛片在线看 | 亚洲国产精品无码一区二区三区 | 国产午夜手机精彩视频 | 国产偷抇久久精品a片69 | 中文字幕乱码人妻二区三区 | 午夜熟女插插xx免费视频 | 国内精品人妻无码久久久影院 | 无码人妻久久一区二区三区不卡 | 天堂无码人妻精品一区二区三区 | 亚洲 另类 在线 欧美 制服 | 欧美兽交xxxx×视频 | 美女扒开屁股让男人桶 | 99国产欧美久久久精品 | 性生交大片免费看女人按摩摩 | 亚洲s码欧洲m码国产av | 九九热爱视频精品 | 国产av无码专区亚洲awww | 97久久精品无码一区二区 | 无码人妻av免费一区二区三区 | 中文字幕人妻无码一区二区三区 | 国产精品久久久久久亚洲毛片 | 亚洲国产欧美日韩精品一区二区三区 | 国产精品人人爽人人做我的可爱 | 玩弄人妻少妇500系列视频 | 欧美丰满老熟妇xxxxx性 | 国产av一区二区精品久久凹凸 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 人妻插b视频一区二区三区 | 四虎永久在线精品免费网址 | 国产精品-区区久久久狼 | 在线播放免费人成毛片乱码 | 亚欧洲精品在线视频免费观看 | 少女韩国电视剧在线观看完整 | 亚洲精品国产精品乱码视色 | 亚洲熟妇色xxxxx亚洲 | 中文字幕无码av波多野吉衣 | 日韩欧美成人免费观看 | 人人爽人人澡人人高潮 | 免费中文字幕日韩欧美 | 久久精品国产大片免费观看 | 无码国产乱人伦偷精品视频 | 国产免费无码一区二区视频 | 丰满人妻一区二区三区免费视频 | 国产偷自视频区视频 | 精品一二三区久久aaa片 | 狠狠综合久久久久综合网 | 欧美xxxx黑人又粗又长 | 兔费看少妇性l交大片免费 | 草草网站影院白丝内射 | 熟女少妇在线视频播放 | 人妻aⅴ无码一区二区三区 | 狂野欧美性猛xxxx乱大交 | 亚洲精品成a人在线观看 | 国产成人综合在线女婷五月99播放 | 国产精品久久国产精品99 | 日日噜噜噜噜夜夜爽亚洲精品 | 少妇无码吹潮 | 久久久久久久久蜜桃 | 波多野结衣一区二区三区av免费 | 国产精品多人p群无码 | 国产一区二区三区影院 | 扒开双腿吃奶呻吟做受视频 | 东京无码熟妇人妻av在线网址 | 最新国产乱人伦偷精品免费网站 | 色欲综合久久中文字幕网 | 永久免费精品精品永久-夜色 | 无码毛片视频一区二区本码 | 亚洲熟女一区二区三区 | 西西人体www44rt大胆高清 | 亚洲精品一区二区三区在线 | 国产综合在线观看 | 中文无码成人免费视频在线观看 | 亚洲 另类 在线 欧美 制服 | 成 人 网 站国产免费观看 | 麻豆人妻少妇精品无码专区 | 2020久久香蕉国产线看观看 | 亚洲国产综合无码一区 | 男女爱爱好爽视频免费看 | 免费无码的av片在线观看 | 麻豆国产人妻欲求不满谁演的 | 国产va免费精品观看 | 在线观看免费人成视频 | 无遮挡啪啪摇乳动态图 | 国产亚洲人成在线播放 | 久久久久久九九精品久 | 波多野结衣 黑人 | 国产精品美女久久久 | 欧美自拍另类欧美综合图片区 | 狠狠躁日日躁夜夜躁2020 | 人妻天天爽夜夜爽一区二区 | 免费国产黄网站在线观看 | 女人被男人爽到呻吟的视频 | 中文无码精品a∨在线观看不卡 | 欧美亚洲日韩国产人成在线播放 | 亚洲人成网站在线播放942 | 亚洲色欲色欲欲www在线 | 亚洲gv猛男gv无码男同 | 十八禁真人啪啪免费网站 | 性生交大片免费看女人按摩摩 | 成人aaa片一区国产精品 | 无遮无挡爽爽免费视频 | 国产成人精品优优av | 国产亚洲精品久久久久久久 | 精品久久久无码人妻字幂 | 国产精品嫩草久久久久 | 曰本女人与公拘交酡免费视频 | 国产成人无码av片在线观看不卡 | 欧美精品一区二区精品久久 | 国产亚洲tv在线观看 | 玩弄少妇高潮ⅹxxxyw | 国产一精品一av一免费 | 日本一卡二卡不卡视频查询 | 亚洲人成网站免费播放 | 亚洲精品一区二区三区四区五区 | 国产成人精品一区二区在线小狼 | 人人妻人人澡人人爽人人精品 | 人人爽人人爽人人片av亚洲 | 亚洲欧美精品aaaaaa片 | 色情久久久av熟女人妻网站 | 丰满岳乱妇在线观看中字无码 | 午夜精品久久久久久久久 | aⅴ亚洲 日韩 色 图网站 播放 | 国产亚洲精品精品国产亚洲综合 | 性欧美大战久久久久久久 | 日本www一道久久久免费榴莲 | 欧美成人高清在线播放 | 黑人粗大猛烈进出高潮视频 | 亚洲色在线无码国产精品不卡 | 少妇人妻大乳在线视频 | 麻豆蜜桃av蜜臀av色欲av | 无码av岛国片在线播放 | 成人免费视频一区二区 | 国产超碰人人爽人人做人人添 | 精品 日韩 国产 欧美 视频 | 性色欲网站人妻丰满中文久久不卡 | 亚洲 激情 小说 另类 欧美 | 亚洲成av人影院在线观看 | 日日天干夜夜狠狠爱 | 亚洲人成影院在线观看 | 日韩精品成人一区二区三区 | 国产精品香蕉在线观看 | 精品国产青草久久久久福利 | 自拍偷自拍亚洲精品被多人伦好爽 | 麻豆国产丝袜白领秘书在线观看 | 久久精品国产99久久6动漫 | 久久人妻内射无码一区三区 | 亚无码乱人伦一区二区 | 国产手机在线αⅴ片无码观看 | 国产综合在线观看 | 国产成人无码午夜视频在线观看 | 精品人妻中文字幕有码在线 | 成人动漫在线观看 | 精品亚洲韩国一区二区三区 | 免费人成网站视频在线观看 | 国产在线精品一区二区高清不卡 | 日本又色又爽又黄的a片18禁 | 2020最新国产自产精品 | 日韩成人一区二区三区在线观看 | 亚洲国产精品久久人人爱 | 亚洲精品国产第一综合99久久 | 内射巨臀欧美在线视频 | 久久国产精品二国产精品 | 2020最新国产自产精品 | 国产舌乚八伦偷品w中 | 欧美日韩一区二区免费视频 | 青青青手机频在线观看 | 国产精品资源一区二区 | 久久精品成人欧美大片 | 偷窥日本少妇撒尿chinese | 国产在线aaa片一区二区99 | 少妇人妻偷人精品无码视频 | 欧美兽交xxxx×视频 | 久久精品中文闷骚内射 | 野狼第一精品社区 | 国产真实乱对白精彩久久 | 国产 精品 自在自线 | 熟女少妇在线视频播放 | 377p欧洲日本亚洲大胆 | 国产偷抇久久精品a片69 | 久久99精品久久久久久 | 无码国产色欲xxxxx视频 | 精品国产一区av天美传媒 | 久久综合给久久狠狠97色 | 国产精品无套呻吟在线 | 亚洲一区二区三区四区 | 亚洲精品国产第一综合99久久 | 欧美精品免费观看二区 | 男人扒开女人内裤强吻桶进去 | 亚洲精品一区国产 | 亚洲欧洲无卡二区视頻 | 丰满少妇弄高潮了www | 自拍偷自拍亚洲精品被多人伦好爽 | 久9re热视频这里只有精品 | 亚洲人成无码网www | 对白脏话肉麻粗话av | 成人亚洲精品久久久久 | 欧美老熟妇乱xxxxx | 亚洲综合无码久久精品综合 | 精品国产一区av天美传媒 | 亚洲精品国产第一综合99久久 | 天天摸天天碰天天添 | 日日天日日夜日日摸 | 黑人巨大精品欧美黑寡妇 | 天天av天天av天天透 | 美女黄网站人色视频免费国产 | 国产一精品一av一免费 | 亚洲高清偷拍一区二区三区 | 亚洲国产精品一区二区第一页 | 午夜福利电影 | 无码国产激情在线观看 | 国产乱人伦偷精品视频 | 麻豆果冻传媒2021精品传媒一区下载 | 久久精品成人欧美大片 | 久久无码人妻影院 | 亲嘴扒胸摸屁股激烈网站 | 美女毛片一区二区三区四区 | 久精品国产欧美亚洲色aⅴ大片 | 国语精品一区二区三区 | 欧美zoozzooz性欧美 | 亚洲综合精品香蕉久久网 | 国产区女主播在线观看 | 四虎永久在线精品免费网址 | 一二三四社区在线中文视频 | aⅴ亚洲 日韩 色 图网站 播放 | 偷窥日本少妇撒尿chinese | 奇米影视7777久久精品 | 国产免费观看黄av片 | 中文字幕av无码一区二区三区电影 | 玩弄人妻少妇500系列视频 | 久久www免费人成人片 | 久久久久久九九精品久 | 狠狠色欧美亚洲狠狠色www | 色一情一乱一伦一区二区三欧美 | 亚洲国产精品久久人人爱 | 国产成人久久精品流白浆 | 人妻插b视频一区二区三区 | 麻豆md0077饥渴少妇 | 欧美阿v高清资源不卡在线播放 | 中文字幕 亚洲精品 第1页 | 中文字幕人成乱码熟女app | 国产国语老龄妇女a片 | 久久天天躁夜夜躁狠狠 | 国产在线精品一区二区三区直播 | 亚洲欧美精品伊人久久 | 内射爽无广熟女亚洲 | 亚洲精品国产a久久久久久 | 俺去俺来也www色官网 | 强开小婷嫩苞又嫩又紧视频 | 欧美成人免费全部网站 | 综合网日日天干夜夜久久 | 98国产精品综合一区二区三区 | 久久精品国产日本波多野结衣 | √8天堂资源地址中文在线 | 内射爽无广熟女亚洲 | 亚洲 日韩 欧美 成人 在线观看 | 牲欲强的熟妇农村老妇女视频 | 亚洲成色在线综合网站 | 老太婆性杂交欧美肥老太 | 精品一区二区三区波多野结衣 | 国产三级久久久精品麻豆三级 | 国产无套内射久久久国产 | 亚洲国产欧美日韩精品一区二区三区 | 久久天天躁狠狠躁夜夜免费观看 | а天堂中文在线官网 | 伊人久久大香线蕉av一区二区 | 国产亚洲精品久久久久久国模美 | 亚洲中文字幕无码一久久区 | 波多野结衣 黑人 | 亚洲热妇无码av在线播放 | 人人妻人人澡人人爽精品欧美 | 国产午夜精品一区二区三区嫩草 | 亚洲天堂2017无码中文 | 5858s亚洲色大成网站www | 国产免费观看黄av片 | 亲嘴扒胸摸屁股激烈网站 | 欧美zoozzooz性欧美 | 色综合久久久无码中文字幕 | 国产真实伦对白全集 | 日韩人妻无码一区二区三区久久99 | 啦啦啦www在线观看免费视频 | 精品一区二区三区波多野结衣 | 精品国产青草久久久久福利 | 亚洲精品中文字幕乱码 | 国产乱人伦偷精品视频 | 日本乱人伦片中文三区 | 美女毛片一区二区三区四区 | 国产精品久久福利网站 | 人人妻人人藻人人爽欧美一区 | 亚洲成av人片天堂网无码】 | 国产熟妇高潮叫床视频播放 | 乱人伦中文视频在线观看 | 国产成人精品必看 | 久久久久成人片免费观看蜜芽 | 亚洲色大成网站www国产 | 激情内射日本一区二区三区 | 亚洲综合色区中文字幕 | 性做久久久久久久久 | 色窝窝无码一区二区三区色欲 | 国产成人综合在线女婷五月99播放 | 精品人妻人人做人人爽夜夜爽 | 国产成人无码a区在线观看视频app | 丰满少妇高潮惨叫视频 | 女人和拘做爰正片视频 | 99麻豆久久久国产精品免费 | 国产麻豆精品精东影业av网站 | 中文无码精品a∨在线观看不卡 | 九九热爱视频精品 | 自拍偷自拍亚洲精品被多人伦好爽 | 日韩欧美中文字幕公布 | 高清国产亚洲精品自在久久 | 精品人妻中文字幕有码在线 | 精品成在人线av无码免费看 | 一本色道久久综合亚洲精品不卡 | 黑人巨大精品欧美一区二区 | 国产亚洲欧美日韩亚洲中文色 | 日日摸夜夜摸狠狠摸婷婷 | 美女毛片一区二区三区四区 | 无码人妻丰满熟妇区毛片18 | 久久国产自偷自偷免费一区调 | 国产精品美女久久久 | 国产suv精品一区二区五 | 亚洲精品一区三区三区在线观看 | 久久久中文久久久无码 | 娇妻被黑人粗大高潮白浆 | 亚洲色欲色欲欲www在线 | 国色天香社区在线视频 | 日韩在线不卡免费视频一区 | 熟妇女人妻丰满少妇中文字幕 | 国产超碰人人爽人人做人人添 | 捆绑白丝粉色jk震动捧喷白浆 | 特级做a爰片毛片免费69 | 性色av无码免费一区二区三区 | 黑人大群体交免费视频 | 日本护士xxxxhd少妇 | 乌克兰少妇xxxx做受 | 亚洲 激情 小说 另类 欧美 | 久久99精品久久久久久 | 亚洲综合色区中文字幕 | 熟妇激情内射com | 久久精品国产精品国产精品污 | 久久久中文字幕日本无吗 | 一本色道久久综合狠狠躁 | 欧美一区二区三区视频在线观看 | 亚洲国产精品久久人人爱 | 欧美午夜特黄aaaaaa片 | 亚洲成a人片在线观看日本 | 在线播放亚洲第一字幕 | 久久午夜夜伦鲁鲁片无码免费 | 18精品久久久无码午夜福利 | 亚洲熟女一区二区三区 | 亚洲精品中文字幕久久久久 | 夜夜躁日日躁狠狠久久av | 一本大道久久东京热无码av | 中文字幕精品av一区二区五区 | 天天拍夜夜添久久精品大 | 亚洲熟妇色xxxxx欧美老妇 | 精品国产麻豆免费人成网站 | 久久 国产 尿 小便 嘘嘘 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产农村妇女高潮大叫 | 老司机亚洲精品影院无码 | 久久精品人人做人人综合 | 秋霞特色aa大片 | 亚洲热妇无码av在线播放 | 亚洲伊人久久精品影院 | 国产av剧情md精品麻豆 | 成人影院yy111111在线观看 | 日本精品久久久久中文字幕 | 久久无码中文字幕免费影院蜜桃 | 欧美日本免费一区二区三区 | 国产片av国语在线观看 | 亚洲国产精品久久久天堂 | 伦伦影院午夜理论片 | 97久久精品无码一区二区 | 亚洲精品一区二区三区在线 | 思思久久99热只有频精品66 | 中文字幕av无码一区二区三区电影 | 亚洲最大成人网站 | 人妻少妇精品久久 | 亚洲国精产品一二二线 | 婷婷综合久久中文字幕蜜桃三电影 | 久久综合九色综合欧美狠狠 | 成人亚洲精品久久久久 | 国产极品美女高潮无套在线观看 | 欧美丰满老熟妇xxxxx性 | 妺妺窝人体色www婷婷 | 国产另类ts人妖一区二区 | 国产日产欧产精品精品app | 亚洲综合精品香蕉久久网 | 日日摸夜夜摸狠狠摸婷婷 | 国产国产精品人在线视 | 成熟女人特级毛片www免费 | 内射欧美老妇wbb | 人妻少妇精品久久 | 色爱情人网站 | 成人一在线视频日韩国产 | 熟妇人妻无码xxx视频 | 无码乱肉视频免费大全合集 | 精品国产aⅴ无码一区二区 | 欧美老人巨大xxxx做受 | av人摸人人人澡人人超碰下载 | 国产一区二区三区四区五区加勒比 | 欧美性色19p | 成人av无码一区二区三区 | 婷婷综合久久中文字幕蜜桃三电影 | 国产性生大片免费观看性 | 日本乱人伦片中文三区 | 正在播放老肥熟妇露脸 | 76少妇精品导航 | 亚洲の无码国产の无码步美 | 丝袜人妻一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 丰满少妇人妻久久久久久 | 亚洲色成人中文字幕网站 | 国产精品毛片一区二区 | 日日天日日夜日日摸 | 国内精品人妻无码久久久影院蜜桃 | 国产精品亚洲а∨无码播放麻豆 | 国产亚洲精品久久久久久久 | 婷婷色婷婷开心五月四房播播 | 久久午夜无码鲁丝片午夜精品 | 色诱久久久久综合网ywww | 强奷人妻日本中文字幕 | 国产超级va在线观看视频 | 色综合视频一区二区三区 | 特黄特色大片免费播放器图片 | 男女猛烈xx00免费视频试看 | 欧美国产日韩亚洲中文 | 丝袜人妻一区二区三区 | 亚洲男女内射在线播放 | 波多野结衣乳巨码无在线观看 | 熟妇人妻中文av无码 | 精品人妻人人做人人爽夜夜爽 | 亚洲午夜福利在线观看 | 国产无套内射久久久国产 | 国产午夜精品一区二区三区嫩草 | 免费观看激色视频网站 | 国产小呦泬泬99精品 | 少妇性荡欲午夜性开放视频剧场 | 丰满少妇弄高潮了www | 欧美人与牲动交xxxx | 国产亚洲欧美日韩亚洲中文色 | 人妻少妇精品久久 | 久久精品视频在线看15 | 激情五月综合色婷婷一区二区 | 中文字幕久久久久人妻 | 亚洲乱码中文字幕在线 | 成熟女人特级毛片www免费 | 亚洲国产日韩a在线播放 | 欧美激情综合亚洲一二区 | 欧美熟妇另类久久久久久不卡 | 亚洲欧美精品aaaaaa片 | 欧美乱妇无乱码大黄a片 | 欧美精品无码一区二区三区 | 国产另类ts人妖一区二区 | 丰腴饱满的极品熟妇 | 国产舌乚八伦偷品w中 | 国产av人人夜夜澡人人爽麻豆 | 中文字幕乱码中文乱码51精品 | 久久99精品久久久久久动态图 | 99久久久国产精品无码免费 | 一本大道久久东京热无码av | 黑森林福利视频导航 | 特大黑人娇小亚洲女 | 亚洲成a人一区二区三区 | 国语自产偷拍精品视频偷 | 精品无码一区二区三区爱欲 | 永久黄网站色视频免费直播 | 国产乡下妇女做爰 | 欧美日本精品一区二区三区 | 欧美兽交xxxx×视频 | 欧美猛少妇色xxxxx | 久久99精品久久久久婷婷 | 国产69精品久久久久app下载 | 国内少妇偷人精品视频免费 | 97久久超碰中文字幕 | 欧美自拍另类欧美综合图片区 | 色诱久久久久综合网ywww | 任你躁国产自任一区二区三区 | 少妇邻居内射在线 | 中文字幕精品av一区二区五区 | 白嫩日本少妇做爰 | 久久综合网欧美色妞网 | 国产色视频一区二区三区 | 人人妻人人澡人人爽精品欧美 | 少妇人妻偷人精品无码视频 | 久久99久久99精品中文字幕 | 99久久亚洲精品无码毛片 | 国产成人综合在线女婷五月99播放 | 国产成人人人97超碰超爽8 | 人妻少妇精品视频专区 | 久久久久久国产精品无码下载 | 亚洲色成人中文字幕网站 | 国精品人妻无码一区二区三区蜜柚 | 东京一本一道一二三区 | 国产人成高清在线视频99最全资源 | 亚洲熟熟妇xxxx | 亚洲 日韩 欧美 成人 在线观看 | 欧美自拍另类欧美综合图片区 | 国产精品久久国产精品99 | 亚洲一区二区三区四区 | 成人免费视频在线观看 | 性开放的女人aaa片 | 色狠狠av一区二区三区 | 无码免费一区二区三区 | 亚洲呦女专区 | 久久亚洲a片com人成 | 国产精品成人av在线观看 | 日本高清一区免费中文视频 | 中国大陆精品视频xxxx | 撕开奶罩揉吮奶头视频 | 国产手机在线αⅴ片无码观看 | 亚洲高清偷拍一区二区三区 | 欧美亚洲日韩国产人成在线播放 | 无码av中文字幕免费放 | 又大又黄又粗又爽的免费视频 | 毛片内射-百度 | 色爱情人网站 | 亚洲精品午夜国产va久久成人 | 亚洲熟悉妇女xxx妇女av | 久久午夜无码鲁丝片秋霞 | 女人被爽到呻吟gif动态图视看 | 色欲av亚洲一区无码少妇 | 国产午夜亚洲精品不卡下载 | 无码一区二区三区在线观看 | 亚洲精品国偷拍自产在线观看蜜桃 | 99久久无码一区人妻 | 国产精品无码永久免费888 | 内射老妇bbwx0c0ck | 天天做天天爱天天爽综合网 | 男女猛烈xx00免费视频试看 | 精品人妻人人做人人爽夜夜爽 | 18无码粉嫩小泬无套在线观看 | 精品水蜜桃久久久久久久 | 久久精品女人的天堂av | 午夜时刻免费入口 | 久久国内精品自在自线 | 欧美激情综合亚洲一二区 | 人妻无码αv中文字幕久久琪琪布 | 亚洲精品久久久久久久久久久 | 精品国产麻豆免费人成网站 | 国产成人精品一区二区在线小狼 | aa片在线观看视频在线播放 | 日韩欧美中文字幕在线三区 | 国产无遮挡又黄又爽又色 | 久9re热视频这里只有精品 | 成人免费无码大片a毛片 | 国产国产精品人在线视 | 精品熟女少妇av免费观看 | 国内精品一区二区三区不卡 | 激情亚洲一区国产精品 | 图片小说视频一区二区 | 亚洲人亚洲人成电影网站色 | 无人区乱码一区二区三区 | 日韩精品乱码av一区二区 | 精品无码国产一区二区三区av | 男女猛烈xx00免费视频试看 | 亚洲 欧美 激情 小说 另类 | 大色综合色综合网站 | 久久国产精品偷任你爽任你 | 日本在线高清不卡免费播放 | 久久久av男人的天堂 | 欧美 日韩 人妻 高清 中文 | 成人片黄网站色大片免费观看 | 亚洲熟妇色xxxxx欧美老妇y | 国产精品高潮呻吟av久久4虎 | 亚洲精品久久久久中文第一幕 | 欧美性生交xxxxx久久久 | 樱花草在线社区www | 日韩视频 中文字幕 视频一区 | 亚洲a无码综合a国产av中文 | 全球成人中文在线 | 人人妻人人澡人人爽欧美精品 | 野外少妇愉情中文字幕 | 久久精品国产大片免费观看 | 欧美日韩人成综合在线播放 | 清纯唯美经典一区二区 | 精品无人国产偷自产在线 | 97精品人妻一区二区三区香蕉 | 乱码av麻豆丝袜熟女系列 | 国产成人综合色在线观看网站 | 午夜精品一区二区三区的区别 | 欧美日韩视频无码一区二区三 | 日日摸天天摸爽爽狠狠97 | 少妇被黑人到高潮喷出白浆 | 嫩b人妻精品一区二区三区 | 亚洲综合久久一区二区 | 丰满肥臀大屁股熟妇激情视频 | 亚洲中文字幕va福利 | 亚洲熟妇色xxxxx欧美老妇 | 伊人久久大香线焦av综合影院 | 国产午夜无码精品免费看 | 国产精品久久久午夜夜伦鲁鲁 | 国产va免费精品观看 | 欧美成人高清在线播放 | 国产在线精品一区二区三区直播 | 精品国产aⅴ无码一区二区 | 亚洲成av人影院在线观看 | 中文字幕无码人妻少妇免费 | 国产在线精品一区二区高清不卡 | 又黄又爽又色的视频 | 55夜色66夜色国产精品视频 | 亚洲 高清 成人 动漫 | 性啪啪chinese东北女人 | 亚洲自偷精品视频自拍 | 亚洲精品国产精品乱码视色 | 日韩少妇白浆无码系列 | 精品国产av色一区二区深夜久久 | 国产真实乱对白精彩久久 | 妺妺窝人体色www在线小说 | 乱人伦人妻中文字幕无码久久网 | 色五月五月丁香亚洲综合网 | 亚洲成a人片在线观看无码 | 免费国产黄网站在线观看 | 久久久久成人片免费观看蜜芽 | 狠狠躁日日躁夜夜躁2020 | 久久综合久久自在自线精品自 | 国产麻豆精品一区二区三区v视界 | 国产精品亚洲а∨无码播放麻豆 | 一本一道久久综合久久 | 亚无码乱人伦一区二区 | 久久熟妇人妻午夜寂寞影院 | 波多野结衣av一区二区全免费观看 | 东京热男人av天堂 | 自拍偷自拍亚洲精品10p | 欧美熟妇另类久久久久久不卡 | 国产两女互慰高潮视频在线观看 | 国产精品无套呻吟在线 | 日本护士xxxxhd少妇 | 精品无码av一区二区三区 | 玩弄人妻少妇500系列视频 | 真人与拘做受免费视频一 | 国产亚洲精品精品国产亚洲综合 | 成年美女黄网站色大免费全看 | 色爱情人网站 | 99精品久久毛片a片 | 国产精品美女久久久久av爽李琼 | 国语精品一区二区三区 | 中文毛片无遮挡高清免费 | 国产精品人妻一区二区三区四 | 国产一区二区三区影院 | 中文字幕无码视频专区 | 丰满妇女强制高潮18xxxx | 99er热精品视频 | 无码人妻久久一区二区三区不卡 | 色诱久久久久综合网ywww | 99视频精品全部免费免费观看 | 少妇一晚三次一区二区三区 | аⅴ资源天堂资源库在线 | 激情内射亚州一区二区三区爱妻 | 亚洲成av人片在线观看无码不卡 | 装睡被陌生人摸出水好爽 | 日韩av激情在线观看 | 日韩精品无码免费一区二区三区 | 99久久精品无码一区二区毛片 | 国产99久久精品一区二区 | a国产一区二区免费入口 | 亚洲中文字幕在线无码一区二区 | 亚洲色欲色欲天天天www | 一个人免费观看的www视频 | 思思久久99热只有频精品66 | 亚洲人成网站在线播放942 | 欧美性黑人极品hd | 全黄性性激高免费视频 | 少妇被粗大的猛进出69影院 | 夫妻免费无码v看片 | 无码av中文字幕免费放 | 在线精品亚洲一区二区 | 午夜精品久久久内射近拍高清 | 女人和拘做爰正片视频 | 熟女少妇人妻中文字幕 | 亚拍精品一区二区三区探花 | 亚洲国产午夜精品理论片 | 久久成人a毛片免费观看网站 | 无码一区二区三区在线 | 国产口爆吞精在线视频 | 狠狠色色综合网站 | 精品国偷自产在线视频 | 亚洲成色www久久网站 | 日本熟妇人妻xxxxx人hd | 无码av免费一区二区三区试看 | √天堂资源地址中文在线 | 露脸叫床粗话东北少妇 | 领导边摸边吃奶边做爽在线观看 | 亚洲欧洲无卡二区视頻 | 亚洲综合久久一区二区 | 中文字幕人妻丝袜二区 | 亚欧洲精品在线视频免费观看 | 成人性做爰aaa片免费看不忠 | 粗大的内捧猛烈进出视频 | 精品欧美一区二区三区久久久 | 四虎国产精品免费久久 | 人妻无码αv中文字幕久久琪琪布 | 免费观看黄网站 | 精品久久综合1区2区3区激情 | 成人精品视频一区二区三区尤物 | 性生交大片免费看l | 性欧美videos高清精品 | 曰本女人与公拘交酡免费视频 | 正在播放老肥熟妇露脸 | 日本精品人妻无码免费大全 | 蜜臀av无码人妻精品 | 国产人妻人伦精品1国产丝袜 | 美女黄网站人色视频免费国产 | 国精产品一区二区三区 | 西西人体www44rt大胆高清 | 国产精品怡红院永久免费 | 午夜时刻免费入口 | 扒开双腿疯狂进出爽爽爽视频 | 宝宝好涨水快流出来免费视频 | 婷婷丁香六月激情综合啪 | 久久99精品国产麻豆 | 丁香啪啪综合成人亚洲 | 狠狠色噜噜狠狠狠狠7777米奇 | 麻豆精品国产精华精华液好用吗 | 成年女人永久免费看片 | 亚洲色欲色欲天天天www | 亚洲综合在线一区二区三区 | 久久久精品456亚洲影院 | 一区二区三区乱码在线 | 欧洲 | 亚洲精品国产品国语在线观看 | 香港三级日本三级妇三级 | 麻豆国产人妻欲求不满谁演的 | 婷婷丁香五月天综合东京热 | 成熟妇人a片免费看网站 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲aⅴ无码成人网站国产app | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲 另类 在线 欧美 制服 | 奇米影视7777久久精品人人爽 | 四虎国产精品免费久久 | 精品无码国产一区二区三区av | 蜜臀aⅴ国产精品久久久国产老师 | 初尝人妻少妇中文字幕 | 大屁股大乳丰满人妻 | 久激情内射婷内射蜜桃人妖 | 国产一区二区三区四区五区加勒比 | 国产av无码专区亚洲awww | 国产精品人人爽人人做我的可爱 | 精品aⅴ一区二区三区 | av人摸人人人澡人人超碰下载 | 激情综合激情五月俺也去 | 亚洲第一网站男人都懂 | 51国偷自产一区二区三区 | 少妇久久久久久人妻无码 | 亚洲国产精品毛片av不卡在线 | 亚洲国产精品一区二区第一页 | 国产亚av手机在线观看 | 国产av无码专区亚洲awww | 水蜜桃亚洲一二三四在线 | 国产免费久久精品国产传媒 | 无码中文字幕色专区 | 98国产精品综合一区二区三区 | 国产xxx69麻豆国语对白 | 色爱情人网站 | 久久久www成人免费毛片 | 国产精品沙发午睡系列 | 国产精品久久国产三级国 | 美女极度色诱视频国产 | 日韩精品久久久肉伦网站 | 色综合久久久久综合一本到桃花网 | 中文字幕无码免费久久9一区9 | 国产黄在线观看免费观看不卡 | 国产精品久久福利网站 | 99久久精品国产一区二区蜜芽 | 黑人粗大猛烈进出高潮视频 | 午夜福利试看120秒体验区 | 亚洲の无码国产の无码步美 | 少妇久久久久久人妻无码 | 国内精品久久久久久中文字幕 | 欧美国产日韩亚洲中文 | 啦啦啦www在线观看免费视频 | 欧美日韩亚洲国产精品 | 国产午夜手机精彩视频 | 国产人妻精品一区二区三区不卡 | 成人免费视频一区二区 | 国产一区二区三区影院 | 欧美丰满熟妇xxxx | 捆绑白丝粉色jk震动捧喷白浆 | 内射后入在线观看一区 | 伊人久久大香线焦av综合影院 | 亚洲大尺度无码无码专区 | 中文精品久久久久人妻不卡 | 欧美真人作爱免费视频 | 亚洲日韩av一区二区三区中文 | 免费无码一区二区三区蜜桃大 | 久久精品国产99久久6动漫 | 麻豆蜜桃av蜜臀av色欲av | 国产两女互慰高潮视频在线观看 | 中文字幕中文有码在线 | 久久精品中文字幕大胸 | 国产成人无码区免费内射一片色欲 | 国产va免费精品观看 | 国产高清av在线播放 | 人妻夜夜爽天天爽三区 | 精品成人av一区二区三区 | 国产亚洲视频中文字幕97精品 | 任你躁国产自任一区二区三区 | 亚洲成av人片在线观看无码不卡 | 欧美丰满熟妇xxxx性ppx人交 | 色老头在线一区二区三区 | 丰满人妻一区二区三区免费视频 | 免费无码午夜福利片69 | 久久久精品欧美一区二区免费 | 午夜精品久久久久久久 | 亚洲精品美女久久久久久久 | 丰满妇女强制高潮18xxxx | 精品偷拍一区二区三区在线看 | 色婷婷综合中文久久一本 | 亚洲精品久久久久avwww潮水 | 国产真人无遮挡作爱免费视频 | 精品成在人线av无码免费看 | 牲交欧美兽交欧美 | 久久久久久九九精品久 | 成人影院yy111111在线观看 | 乌克兰少妇性做爰 | 国产乱码精品一品二品 | a在线观看免费网站大全 | 欧美精品无码一区二区三区 | 国产亚洲美女精品久久久2020 | 在线播放亚洲第一字幕 | 一本无码人妻在中文字幕免费 | 亚洲一区av无码专区在线观看 | 红桃av一区二区三区在线无码av | 国产精品18久久久久久麻辣 | 亚洲国产成人av在线观看 | 欧美丰满熟妇xxxx | 国产黄在线观看免费观看不卡 | 亚洲 激情 小说 另类 欧美 | 少妇被粗大的猛进出69影院 | 无码午夜成人1000部免费视频 | 日本大乳高潮视频在线观看 | 夜先锋av资源网站 | 成人影院yy111111在线观看 | 福利一区二区三区视频在线观看 | 又紧又大又爽精品一区二区 | 人人妻人人藻人人爽欧美一区 | 国内丰满熟女出轨videos | 国产区女主播在线观看 | 亚洲 a v无 码免 费 成 人 a v | 丰满少妇熟乱xxxxx视频 | 97se亚洲精品一区 | 熟妇人妻无乱码中文字幕 | 亚洲国产精品无码久久久久高潮 | 午夜精品一区二区三区的区别 | 黑森林福利视频导航 | 亚洲大尺度无码无码专区 | 国产激情一区二区三区 | 天天拍夜夜添久久精品大 | 好男人www社区 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 天天做天天爱天天爽综合网 | 国产人妻精品一区二区三区不卡 | 久久人人爽人人爽人人片av高清 | 日日麻批免费40分钟无码 | 国产午夜亚洲精品不卡下载 | 67194成是人免费无码 | 国产激情无码一区二区 | 国产成人综合色在线观看网站 | 好男人www社区 | 亚洲精品一区三区三区在线观看 | 亚洲精品一区二区三区婷婷月 | 国产成人精品视频ⅴa片软件竹菊 | 欧美国产日韩亚洲中文 | 少妇愉情理伦片bd | 国内精品九九久久久精品 | 天堂久久天堂av色综合 | 麻豆精品国产精华精华液好用吗 | 午夜无码人妻av大片色欲 | 亚洲综合精品香蕉久久网 | 国产欧美亚洲精品a | 国产亚洲人成在线播放 | 欧美35页视频在线观看 | 中文字幕无码视频专区 | 又黄又爽又色的视频 | 中文字幕色婷婷在线视频 | 精品亚洲成av人在线观看 | 蜜臀av无码人妻精品 | 国产偷国产偷精品高清尤物 | 日日躁夜夜躁狠狠躁 | 国产精品美女久久久网av | 亚洲精品欧美二区三区中文字幕 | 久久亚洲中文字幕无码 | 国产亚洲日韩欧美另类第八页 | 女人被爽到呻吟gif动态图视看 | 亚洲一区二区三区偷拍女厕 | 97夜夜澡人人爽人人喊中国片 | 欧美精品无码一区二区三区 | 国产乱子伦视频在线播放 | 色 综合 欧美 亚洲 国产 | 免费无码一区二区三区蜜桃大 | 300部国产真实乱 | 麻花豆传媒剧国产免费mv在线 | 亚洲欧美综合区丁香五月小说 | 乱码午夜-极国产极内射 | 玩弄人妻少妇500系列视频 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 97夜夜澡人人双人人人喊 | 日韩少妇内射免费播放 | 亚洲色成人中文字幕网站 | 红桃av一区二区三区在线无码av | 国产97在线 | 亚洲 | 久久精品人人做人人综合试看 | 日韩人妻系列无码专区 | 国产情侣作爱视频免费观看 | 野狼第一精品社区 | 久久综合网欧美色妞网 | 日韩无码专区 | 沈阳熟女露脸对白视频 | 噜噜噜亚洲色成人网站 | 亚洲 欧美 激情 小说 另类 | 亚洲国产精品毛片av不卡在线 | 伊在人天堂亚洲香蕉精品区 | 无码人妻av免费一区二区三区 | 国产精品免费大片 | 在线精品国产一区二区三区 | 中文字幕中文有码在线 | 国产在线无码精品电影网 | 天堂无码人妻精品一区二区三区 | 初尝人妻少妇中文字幕 | 中国女人内谢69xxxxxa片 | 国产精品香蕉在线观看 | 国产精品无码一区二区桃花视频 | 久9re热视频这里只有精品 | 女人被男人爽到呻吟的视频 | 久久久久久亚洲精品a片成人 | 欧美xxxx黑人又粗又长 | 欧美日韩一区二区免费视频 | 久久久久久久久888 | 男女性色大片免费网站 | 极品尤物被啪到呻吟喷水 | 麻豆精品国产精华精华液好用吗 | 国产精品久久久久9999小说 | 中文字幕无码日韩欧毛 | 色综合天天综合狠狠爱 | 国产亚av手机在线观看 | 亚洲 日韩 欧美 成人 在线观看 | 国产婷婷色一区二区三区在线 | 精品久久久久久亚洲精品 | 狠狠色噜噜狠狠狠狠7777米奇 | 亚洲中文字幕无码中字 | 国产精品第一区揄拍无码 | 18禁止看的免费污网站 | 精品日本一区二区三区在线观看 | av人摸人人人澡人人超碰下载 | 日本熟妇浓毛 | 色一情一乱一伦 | 一本久道久久综合婷婷五月 | 国产精品美女久久久网av | 99精品视频在线观看免费 | 国产办公室秘书无码精品99 | 欧美乱妇无乱码大黄a片 | 久热国产vs视频在线观看 | 久久精品国产99精品亚洲 | 亚洲日本va午夜在线电影 | 无码免费一区二区三区 | 亚洲精品综合一区二区三区在线 | 狠狠亚洲超碰狼人久久 | 国产婷婷色一区二区三区在线 | 最近的中文字幕在线看视频 | 小sao货水好多真紧h无码视频 | 动漫av一区二区在线观看 | 激情人妻另类人妻伦 | 狠狠色噜噜狠狠狠7777奇米 | 18无码粉嫩小泬无套在线观看 | 丰满人妻被黑人猛烈进入 | 久久综合香蕉国产蜜臀av | 国产精品高潮呻吟av久久4虎 | 波多野结衣一区二区三区av免费 | 乌克兰少妇性做爰 | 国产精品自产拍在线观看 | 国产激情无码一区二区app | 亚洲成av人片在线观看无码不卡 | 波多野结衣高清一区二区三区 | 日本在线高清不卡免费播放 | 欧美黑人性暴力猛交喷水 | 精品人妻人人做人人爽夜夜爽 | 俺去俺来也在线www色官网 | 国产精品久久久久无码av色戒 | 日韩成人一区二区三区在线观看 | 人人妻人人澡人人爽欧美一区九九 | 丝袜人妻一区二区三区 | 玩弄人妻少妇500系列视频 | 亚洲 另类 在线 欧美 制服 | 久久久久se色偷偷亚洲精品av | 亚洲人成网站色7799 | 亚洲熟妇色xxxxx欧美老妇 | 性色av无码免费一区二区三区 | 中文字幕日韩精品一区二区三区 | 香港三级日本三级妇三级 | 人妻人人添人妻人人爱 | 色婷婷av一区二区三区之红樱桃 | 欧美老妇与禽交 | 97久久国产亚洲精品超碰热 | 精品久久久无码人妻字幂 | 玩弄人妻少妇500系列视频 | 精品少妇爆乳无码av无码专区 | 久久亚洲中文字幕无码 | 国内少妇偷人精品视频免费 | 日韩精品无码一本二本三本色 | 国产偷国产偷精品高清尤物 | 老子影院午夜伦不卡 | 国产精品久久久久无码av色戒 | 亚洲の无码国产の无码影院 | 日本丰满护士爆乳xxxx | 波多野结衣av一区二区全免费观看 | 在线а√天堂中文官网 | 一区二区三区乱码在线 | 欧洲 | 亚洲国产午夜精品理论片 | 99久久99久久免费精品蜜桃 | 亚洲国产精品一区二区美利坚 | 国产凸凹视频一区二区 | 亚洲一区二区三区四区 | а天堂中文在线官网 | 97夜夜澡人人爽人人喊中国片 | 欧美一区二区三区 | 精品无码国产自产拍在线观看蜜 | 国产在线精品一区二区高清不卡 | 国产av无码专区亚洲awww | 黑人大群体交免费视频 | 人妻少妇精品无码专区动漫 | 国产一区二区三区四区五区加勒比 | 免费看男女做好爽好硬视频 | 久久国语露脸国产精品电影 | 亚洲精品一区国产 | 中文字幕精品av一区二区五区 | 装睡被陌生人摸出水好爽 | 国产成人精品必看 | 麻花豆传媒剧国产免费mv在线 | 婷婷六月久久综合丁香 | 亚洲欧洲日本无在线码 | 国产精品久久久久久久影院 | 亚洲自偷自拍另类第1页 | 免费无码av一区二区 | 亚欧洲精品在线视频免费观看 | 亚洲精品欧美二区三区中文字幕 | 精品国精品国产自在久国产87 | 成人亚洲精品久久久久 | 色婷婷综合激情综在线播放 | 久久www免费人成人片 | 天堂无码人妻精品一区二区三区 | 国产人妻久久精品二区三区老狼 | 久久午夜夜伦鲁鲁片无码免费 | 国产成人精品三级麻豆 | 国产人成高清在线视频99最全资源 | 久久久国产精品无码免费专区 | 亚洲欧美日韩国产精品一区二区 | 夜精品a片一区二区三区无码白浆 | 久久人人爽人人爽人人片av高清 | 在线播放亚洲第一字幕 | 亚洲爆乳无码专区 | 色婷婷香蕉在线一区二区 | 国产精品久久久久久久9999 | 精品国产av色一区二区深夜久久 | 精品亚洲成av人在线观看 | 午夜成人1000部免费视频 | 日本乱偷人妻中文字幕 | 麻豆蜜桃av蜜臀av色欲av | 国产精品久久国产三级国 | 国产精品多人p群无码 | 麻豆md0077饥渴少妇 | 亚洲综合在线一区二区三区 | 国产莉萝无码av在线播放 | 精品夜夜澡人妻无码av蜜桃 | 欧美精品国产综合久久 | 亚洲色大成网站www | 无码一区二区三区在线 | 亚洲成a人片在线观看无码 | 日日躁夜夜躁狠狠躁 | 欧美午夜特黄aaaaaa片 | 18禁止看的免费污网站 | 国产成人无码区免费内射一片色欲 | 欧洲精品码一区二区三区免费看 | 国产亚洲精品久久久久久大师 | 久久精品人妻少妇一区二区三区 | 国产亚洲精品久久久久久久 | 国产电影无码午夜在线播放 | 人妻插b视频一区二区三区 | 偷窥日本少妇撒尿chinese | 麻豆蜜桃av蜜臀av色欲av | 国产va免费精品观看 | 国产成人综合在线女婷五月99播放 | 无码人中文字幕 | 久久精品中文字幕大胸 | 中文字幕无码日韩欧毛 | 国产精品久久久久久久影院 | 日韩亚洲欧美中文高清在线 | 国产人妻精品一区二区三区 | 国产成人精品久久亚洲高清不卡 | 亚洲国产精品毛片av不卡在线 | 亚洲一区av无码专区在线观看 | 久久精品国产大片免费观看 | 无码吃奶揉捏奶头高潮视频 | 日韩在线不卡免费视频一区 | 无码吃奶揉捏奶头高潮视频 | 午夜福利试看120秒体验区 | 日本xxxx色视频在线观看免费 | 国产精品无码mv在线观看 | 久久久精品人妻久久影视 | 亚洲国产精品无码久久久久高潮 | 日本又色又爽又黄的a片18禁 | 成人无码视频在线观看网站 | 天堂无码人妻精品一区二区三区 | 中文字幕人妻丝袜二区 | 大肉大捧一进一出视频出来呀 | 久久久久99精品国产片 | 暴力强奷在线播放无码 | 人妻互换免费中文字幕 | 又大又黄又粗又爽的免费视频 | 亚洲 欧美 激情 小说 另类 | 久久久久久a亚洲欧洲av冫 | 精品久久8x国产免费观看 | 国产后入清纯学生妹 | 精品偷自拍另类在线观看 | 亚洲熟妇自偷自拍另类 | 熟女少妇在线视频播放 | 国产成人亚洲综合无码 | 国产精品久久久av久久久 | 亚洲狠狠色丁香婷婷综合 | 大屁股大乳丰满人妻 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 亚洲七七久久桃花影院 | 久久99精品国产麻豆蜜芽 | 成人无码影片精品久久久 | 老熟妇仑乱视频一区二区 | 亚洲毛片av日韩av无码 | 网友自拍区视频精品 | 老头边吃奶边弄进去呻吟 | 永久免费观看美女裸体的网站 | 日韩视频 中文字幕 视频一区 | 亚洲国产成人av在线观看 | 国产精品自产拍在线观看 | 性生交片免费无码看人 | 久久99精品国产麻豆 | 国产熟女一区二区三区四区五区 | 欧美zoozzooz性欧美 | 成人欧美一区二区三区黑人 | 一区二区三区高清视频一 | 欧美阿v高清资源不卡在线播放 | 国产亚洲精品久久久久久久久动漫 | аⅴ资源天堂资源库在线 | 亚洲精品久久久久中文第一幕 | 国产乱人伦av在线无码 | 樱花草在线社区www | 国产成人精品必看 | 午夜时刻免费入口 | 国产欧美精品一区二区三区 | 2020久久香蕉国产线看观看 | 中文字幕av伊人av无码av | 老司机亚洲精品影院 | 亚洲人成无码网www | 亚洲人交乣女bbw | 色一情一乱一伦一区二区三欧美 | 疯狂三人交性欧美 | 国产无遮挡又黄又爽免费视频 | 国产激情艳情在线看视频 | 大色综合色综合网站 | 亚洲精品久久久久久久久久久 | 美女张开腿让人桶 | 青青久在线视频免费观看 | 午夜福利一区二区三区在线观看 | 色老头在线一区二区三区 | 国产精品久久久久久久影院 | 亚洲一区二区三区在线观看网站 | 免费人成在线视频无码 | 国产人成高清在线视频99最全资源 | 中国大陆精品视频xxxx | av在线亚洲欧洲日产一区二区 | 国产精品久久久久9999小说 | 强开小婷嫩苞又嫩又紧视频 | 丝袜 中出 制服 人妻 美腿 | 亚洲中文字幕在线无码一区二区 | 亚洲 高清 成人 动漫 |