[家里蹲大学数学杂志]第387期一套实变函数期末试题参考解答
?
?
一. (本題 $40'$, 每小題 $8$ 分) 證明以下結論:
(1). 設 $\scrA$ 是由 $[0,1]$ 上互不相交的正測度集構成的集族, 則 $\scrA$ 中至多有可數個集.
?
證明: 設 $\scrA_k=\sed{A\in\scrA;m A\geq 1/k}$, 則 $\scrA_k$ 至多有 $k$ 個元素 (若 $\scrA_k$ 有 $k+1$ 個元素 $A_1,\cdots,A_{k+1}$, 則 $$\bex 1=m[0,1]\geq m\sex{\cup_{i=1}^{k+1}A_i}=\sum_{i=1}^{k+1}m A_i\geq \frac{k+1}{k}. \eex$$ 這是一個矛盾, 故有結論). 而 $$\bex \scrA=\cup_{k=1}^\infty \scrA_k \eex$$ 可數.
?
?
(2). $\scrF=\sed{A\subset\bbR^n; m^*A=0\mbox{ 或 }m^*(A^c)=0}$ 是 $\bbR^n$ 上的 $\sigma$ - 代數.
?
證明: $\bbR^n\in\scrF$. $A\in\scrF\ra A^c\in\scrF$. 設 $A_k\in\scrF\ (k\in\bbN)$, 若 $\forall\ k\in\bbN,\ m^*(A_k)=0$, 則 $m A_k=0$, $$\bex m\sex{\cup_{k=1}^\infty A_k}\leq\sum_{k=1}^\infty mA_k=0\ra \cup_{k=1}^\infty A_k\in \scrF; \eex$$ 若 $\exists\ k_0\in\bbN,\st m^*(A_{k_0}^c)=0$, 則 $$\bex m\sex{\sex{\cup_{k=1}^\infty A_k}^c} =m\sex{\cap_{k=1}^\infty A_k^c}=0\ra \cup_{k=1}^\infty A_k\in\scrF. \eex$$ 故有結論.
?
?
(3). 設 $f(x)$ 是 $[a,b]$ 上的非負連續(xù)函數, 則 $f$ 的下方圖形 $$\bex E=\sed{(x,y);\ a\leq x\leq b,\ 0\leq y\leq f(x)} \eex$$ 是 $\bbR^2$ 上的閉集.
?
證明: 設 $$\bex E\ni (x_n,y_n)\to(x_0,y_0), \eex$$ 則 $$\bex a\leq x_n\leq b,\quad 0\leq y_n\leq f(x_n). \eex$$ 令 $n\to\infty$, 注意到 $f$ 的連續(xù)性, 我們有 $$\bex a\leq x_0\leq b,\quad 0\leq y_0\leq f(x_0). \eex$$ 故 $(x_0,y_0)\in E$.
?
?
(4). 設 $f$ 是可測集 $E$ 上的可測函數, 若 $m E[|f|>0]>0$, 則存在 $c>0$, 使得 $m E[|f|\geq c]>0$.
?
證明: 由 $$\bex 0<mE[|f|>0]=m\sex{\cup_{k=1}^\infty E\sez{|f|\geq \frac{1}{n}}}=\vlm{n}mE\sez{|f|\geq \frac{1}{n}} \eex$$ 及極限的保號性即知結論.
?
?
(5). 設 $f(x)$ 是 $[0,1]$ 上的連續(xù)函數, 并且 $\dps{\lim_{x\to 0^+}f(x)=0}$, 則 $f(x^n)$ 是 $[0,1]$ 上的可測函數, 并且 $f(x^n)$ 在 $[0,1]$ 上依測度收斂于 $0$.
?
證明: $f(x^n)$ 是 $[0,1]$ 上的連續(xù)函數, 而可測. 又由 $$\bex \vlm{n}f(x^n)=f\sex{\vlm{n}x^n}=\sedd{\ba{ll} f(0)=0,&0\leq x<1\\ f(1),&x=1 \ea} \eex$$ 知 $f(x^n)$ 幾乎處處收斂于 $0$. 據 Lebesgue 的定理, $f(x^n)\ra 0$.
?
以下六題, 任選 $5$ 題, 每題 $12$ 分. 二. 設 $A\subset\bbR^n$. 點 $x$ 稱為 $A$ 的邊界點, 若對任意 $\ve>0$, $U(x,\ve)$ 中既包含 $A$ 中的點, 也包含 $A^c$ 中的點. $A$ 的邊界點的全體所成的集記為 $\p A$. 證明:
(1). $A$ 是開基當且僅當 $A\cap \p A=\vno$.
(2). $A$ 是閉集當且僅當 $\p A\subset A$.
?
證明:
(1). $\ra$: 設 $A$ 是開集, 則 $\forall\ x_0\in A$, 存在某鄰域 $U(x_0,\ve_0)\subset A$, 而 $U(x_0,\ve_0)$ 沒有 $A^c$ 中的點, $x_0\not\in \p A$, $A\cap \p A=\vno$. $\la$: 設 $A\cap \p A=\vno$, 則對 $\forall\ x_0\in A$, $x_0\not\in \p A$, 而存在 $U(x_0,\ve_0)$ 使得其沒有 $A$ 中點或者沒有 $A^c$ 中的點. 如今, $U(x_0,\ve_0)$ 已有 $A$ 中的點 $x_0$, 而 ``$U(x_0,\ve_0)$ 沒有 $A^c$ 中的點'' 成立, $U(x_0,\ve_0)\subset A$. $A$ 是開集.
(2). $\ra$: 設 $A$ 是閉集, 則由 $\p A$ 的定義, $$\bex x_0\in \p A\ra \exists\ A\ni x_n\to x_0\ra x_0\in A. \eex$$ $\la$: 設 $\p A\subset A$, $A\ni x_n\to x_0$, 則 $x_0$ 是 $A$ 的內點或者邊界點, 不論何種情形, 均有 $x_0\in A$.
?
三. 設 $A$ 是 $[a,b]$ 上的可測集, $mA>0$. 證明存在三個互不相交的可測子集 $A_1,A_2,A_3$ 使得 $A=A_1\cup A_2\cup A_3$, 并且 $$\bex m A_i=\frac{1}{3} m A,\quad i=1,2,3. \eex$$
?
證明: 定義 $$\bex \ba{rl} f:[a,b]&\to [0,\infty)\\ x&\mapsto m ([a,x)\cap A). \ea \eex$$ 則 $f$ 遞增連續(xù) ($|f(x)-f(y)|\leq |x-y|$). 由介值定理, $$\bex \exists\ a<x_0<y_0<b,\st f(x_0)=\frac{1}{3}m A,\ f(y_0)=\frac{2}{3}m A. \eex$$ 取 $$\bex A_1=[a,x_0)\cap A,\quad A_2=[x_0,y_0)\cap A,\quad A_3=[y_0,b]\cap A, \eex$$ 則它們適合題意.
?
四. 用 Lusin 定理證明: 若 $f$ 是有限測度集 $E$ 上的 $\ae$ 有限的可測函數, 則對任意 $\delta>0$, 存在閉集 $A\subset E$, 使得 $m(E-A)<\delta$, 并且 $f$ 在 $A$ 上有界.
?
證明: 由 Lusin 定理, 對任意 $\delta>0$, 存在閉集 $A\subset E$, 使得 $m(E-A)<\delta$, 并且 $f$ 在 $A$ 上連續(xù). 注意到 $A$ 是有界閉集, 而 $f$ 在 $A$ 上有界.
?
五. 設 $f\in L(\bbR^1)$, 證明 $$\bex I(t)=\int_\bbR f(x)\sin tx\rd x \eex$$ 是 $\bbR^1$ 上的連續(xù)函數.
?
證明: 對 $\forall\ t_0\in\bbR^1, \ t_n\to t_0$, 由 Lebesgue 控制收斂定理, $$\bex \vlm{n}I(t_n)=I(t_0). \eex$$
?
六. 設 $\sed{f_n}$ 是 $[a,b]$ 上的實值可測函數列. 證明: $$\bex \vlm{n}\int_a^b\arctan |f_n|\rd x=0\lra f_n\mbox{ 依測度收斂于 }0. \eex$$
?
證明: $\ra$: $\forall\ \delta>0$, $$\bex m E[|f_n|\geq \delta]\leq \frac{1}{\arctan \delta}\int_{E[|f_n|\geq\delta]} \arctan |f_n|\rd x \leq \frac{1}{\arctan \delta}\int_a^b \arctan |f_n|\rd x. \eex$$ 令 $n\to\infty$ 有 $$\bex \vlm{n}m E[|f_n|\geq \delta]=0. \eex$$ $\la$: $\forall\ \delta>0$, $$\beex \bea \int_a^b \arctan |f_n|\rd x&=\int_{E[|f_n|\geq \delta]}\arctan|f_n|\rd x +\int_{E[|f_n|<\delta]}\arctan|f_n|\rd x\\ &\leq\frac{\pi}{2}m E[|f_n|\geq \delta]+(b-a)\arctan \delta. \eea\eeex$$ 令 $n\to\infty$ 有 $$\bex \vls{n}\int_a^b \arctan |f_n|\rd x\leq (b-a)\arctan \delta. \eex$$ 再令 $\delta\to 0^+$ 有 $$\bex \vls{n}\int_a^b \arctan |f_n|\rd x\leq 0\ra \vlm{n}\int_a^b \arctan |f_n|\rd x=0. \eex$$
?
七. 用 Lebesgue 積分理論計算 $$\bex \vlm{n}\int_0^\infty \sex{1+\frac{x}{n}}^{-n}x^{-\frac{1}{n}}\rd x. \eex$$
?
解答: 注意到 $$\bex \int_{(0,\infty)}\lim_{n\to\infty}\frac{1}{\sex{1+\frac{x}{n}}^nx^{1/n}} \rd x =\int_{(0,\infty)}e^{-x}\rd x =1, \eex$$ 我們嘗試構造控制函數, 而由 Lebesgue 控制收斂定理得到結論. 事實上, 由 $$\bex \left.\ba{cc} 0<x\leq 1\\ n\geq 2 \ea\right\} \ra \frac{1}{\sex{1+\frac{x}{n}}^nt^{1/n}}\leq \frac{1}{x^{1/n}} \leq \frac{1}{\sqrt{x}}, \eex$$ $$\beex \bea \left.\ba{cc} x>1\\ n\geq 2 \ea\right\} &\ra \frac{1}{\sex{1+\frac{x}{n}}^nt^{1/n}} =\frac{1}{\sez{1+\sex{n\atop 1}\frac{x}{n}+\sex{n\atop 2}\sex{\frac{x}{n}}^2+\cdots}x^{1/n}}\\ &\quad\quad\quad\quad\quad\quad\quad\ \leq \frac{2n}{(n-1)x^2} \leq \frac{4}{x^2} \eea \eeex$$ 知 $\dps{\frac{1}{\sex{1+\frac{x}{n}}^nx^{1/n}}}$ 有控制函數 $$\bex f(x)=\left\{\ba{ll} \dps{\frac{1}{\sqrt{x}}},&0<x\leq 1,\\ \dps{\frac{4}{x^2}},&x>1. \ea\right. \eex$$?
?
題目來源:?http://www.cnblogs.com/zhangwenbiao/p/4223984.html
總結
以上是生活随笔為你收集整理的[家里蹲大学数学杂志]第387期一套实变函数期末试题参考解答的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 重温C++之“strcpy_s与strc
- 下一篇: C和指针之学习笔记(3)