VC多线程编程之线程创建与示例
一、問題的提出
編寫一個耗時的單線程程序:
新建一個基于對話框的應用程序SingleThread,在主對話框IDD_SINGLETHREAD_DIALOG添加一個按鈕,ID為IDC_SLEEP_SIX_SECOND,標題為“延時6秒”,添加按鈕的響應函數,代碼如下:
void CSingleThreadDlg::OnSleepSixSecond()
{
??? Sleep(6000); //延時6秒
}
編譯并運行應用程序,單擊“延時6秒”按鈕,你就會發現在這6秒期間程序就象“死機”一樣,不在響應其它消息。為了更好地處理這種耗時的操作,我們有必要學習——多線程編程。
二、多線程概述
進程和線程都是操作系統的概念。進程是應用程序的執行實例,每個進程是由私有的虛擬地址空間、代碼、數據和其它各種系統資源組成,進程在運行過程中創建的資源隨著進程的終止而被銷毀,所使用的系統資源在進程終止時被釋放或關閉。
線程是進程內部的一個執行單元。系統創建好進程后,實際上就啟動執行了該進程的主執行線程,主執行線程以函數地址形式,比如說main或WinMain函數,將程序的啟動點提供給Windows系統。主執行線程終止了,進程也就隨之終止。
每一個進程至少有一個主執行線程,它無需由用戶去主動創建,是由系統自動創建的。用戶根據需要在應用程序中創建其它線程,多個線程并發地運行于同一個進程中。一個進程中的所有線程都在該進程的虛擬地址空間中,共同使用這些虛擬地址空間、全局變量和系統資源,所以線程間的通訊非常方便,多線程技術的應用也較為廣泛。
多線程可以實現并行處理,避免了某項任務長時間占用CPU時間。要說明的一點是,目前大多數的計算機都是單處理器(CPU)的,為了運行所有這些線程,操作系統為每個獨立線程安排一些CPU時間,操作系統以輪換方式向線程提供時間片,這就給人一種假象,好象這些線程都在同時運行。由此可見,如果兩個非常活躍的線程為了搶奪對CPU的控制權,在線程切換時會消耗很多的CPU資源,反而會降低系統的性能。這一點在多線程編程時應該注意。
Win32 SDK函數支持進行多線程的程序設計,并提供了操作系統原理中的各種同步、互斥和臨界區等操作。Visual C++ 6.0中,使用MFC類庫也實現了多線程的程序設計,使得多線程編程更加方便。
三、Win32 API對多線程編程的支持
Win32 提供了一系列的API函數來完成線程的創建、掛起、恢復、終結以及通信等工作。下面將選取其中的一些重要函數進行說明。
1. HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
????????????????? DWORD dwStackSize,
????????????????? LPTHREAD_START_ROUTINE lpStartAddress,
????????????????? LPVOID lpParameter,
????????????????? DWORD dwCreationFlags,
????????????????? LPDWORD lpThreadId);
???? 該函數在其調用進程的進程空間里創建一個新的線程,并返回已建線程的句柄,其中各參數說明如下:
lpThreadAttributes:指向一個 SECURITY_ATTRIBUTES 結構的指針,該結構決定了線程的安全屬性,一般置為 NULL;
dwStackSize:指定了線程的堆棧深度,一般都設置為0;
lpStartAddress:表示新線程開始執行時代碼所在函數的地址,即線程的起始地址。一般情況為(LPTHREAD_START_ROUTINE)ThreadFunc,ThreadFunc 是線程函數名;
lpParameter:指定了線程執行時傳送給線程的32位參數,即線程函數的參數;
dwCreationFlags:控制線程創建的附加標志,可以取兩種值。如果該參數為0,線程在被創建后就會立即開始執行;如果該參數為CREATE_SUSPENDED,則系統產生線程后,該線程處于掛起狀態,并不馬上執行,直至函數ResumeThread被調用;
lpThreadId:該參數返回所創建線程的ID;
如果創建成功則返回線程的句柄,否則返回NULL。
2. DWORD SuspendThread(HANDLE hThread);
該函數用于掛起指定的線程,如果函數執行成功,則線程的執行被掛起。
3. DWORD ResumeThread(HANDLE hThread);
該函數用于結束線程的掛起狀態,執行線程。
4. VOID ExitThread(DWORD dwExitCode);
該函數用于線程終結自身的執行,主要在線程的執行函數中被調用。其中參數dwExitCode用來設置線程的退出碼。
5. BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);
一般情況下,線程運行結束之后,線程函數正常返回,但是應用程序可以調用TerminateThread強行終止某一線程的執行。各參數含義如下:
????? hThread:將被終結的線程的句柄;
????? dwExitCode:用于指定線程的退出碼。
使用TerminateThread()終止某個線程的執行是不安全的,可能會引起系統不穩定;雖然該函數立即終止線程的執行,但并不釋放線程所占用的資源。因此,一般不建議使用該函數。
6. BOOL PostThreadMessage(DWORD idThread,
??? UINT Msg,
??? WPARAM wParam,
??? LPARAM lParam);
該函數將一條消息放入到指定線程的消息隊列中,并且不等到消息被該線程處理時便返回。
idThread:將接收消息的線程的ID;
Msg:指定用來發送的消息;
wParam:同消息有關的字參數;
lParam:同消息有關的長參數;
調用該函數時,如果即將接收消息的線程沒有創建消息循環,則該函數執行失敗。
四、Win32 API多線程編程例程
例程1 MultiThread1
建立一個基于對話框的工程MultiThread1,在對話框IDD_MULTITHREAD1_DIALOG中加入兩個按鈕和一個編輯框,兩個按鈕的ID分別是IDC_START,IDC_STOP ,標題分別為“啟動”,“停止”,IDC_STOP的屬性選中Disabled;編輯框的ID為IDC_TIME ,屬性選中Read-only;
在MultiThread1Dlg.h文件中添加線程函數聲明: void ThreadFunc();
注意,線程函數的聲明應在類CMultiThread1Dlg的外部。 在類CMultiThread1Dlg內部添加protected型變量:?? HANDLE hThread;
DWORD ThreadID;
分別代表線程的句柄和ID。
在MultiThread1Dlg.cpp文件中添加全局變量m_bRun : volatile BOOL m_bRun;
m_bRun 代表線程是否正在運行。
你要留意到全局變量 m_bRun 是使用 volatile 修飾符的,volatile 修飾符的作用是告訴編譯器無需對該變量作任何的優化,即無需將它放到一個寄存器中,并且該值可被外部改變。對于多線程引用的全局變量來說,volatile 是一個非常重要的修飾符。
編寫線程函數: void ThreadFunc()
{
CTime time;
CString strTime;
m_bRun=TRUE;
while(m_bRun)
{
?? time=CTime::GetCurrentTime();
?? strTime=time.Format("%H:%M:%S");
?? ::SetDlgItemText(AfxGetMainWnd()->m_hWnd,IDC_TIME,strTime);
?? Sleep(1000);
}
}
該線程函數沒有參數,也不返回函數值。只要m_bRun為TRUE,線程一直運行。
雙擊IDC_START按鈕,完成該按鈕的消息函數:
void CMultiThread1Dlg::OnStart()
{
// TODO: Add your control notification handler code here
hThread=CreateThread(NULL,
?? 0,
?? (LPTHREAD_START_ROUTINE)ThreadFunc,
?? NULL,
?? 0,
?? &ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
GetDlgItem(IDC_STOP)->EnableWindow(TRUE);
}
雙擊IDC_STOP按鈕,完成該按鈕的消息函數: void CMultiThread1Dlg::OnStop()
{
// TODO: Add your control notification handler code here
m_bRun=FALSE;
GetDlgItem(IDC_START)->EnableWindow(TRUE);
GetDlgItem(IDC_STOP)->EnableWindow(FALSE);
}
編譯并運行該例程,體會使用Win32 API編寫的多線程。
?
例程2 MultiThread2
該線程演示了如何傳送一個一個整型的參數到一個線程中,以及如何等待一個線程完成處理。
????? 建立一個基于對話框的工程MultiThread2,在對話框IDD_MULTITHREAD2_DIALOG中加入一個編輯框和一個按鈕,ID分別是IDC_COUNT,IDC_START ,按鈕控件的標題為“開始”;
在MultiThread2Dlg.h文件中添加線程函數聲明: void ThreadFunc(int integer);
注意,線程函數的聲明應在類CMultiThread2Dlg的外部。
在類CMultiThread2Dlg內部添加protected型變量:?? HANDLE hThread;
DWORD ThreadID;
分別代表線程的句柄和ID。
打開ClassWizard,為編輯框IDC_COUNT添加int型變量m_nCount。在MultiThread2Dlg.cpp文件中添加:void ThreadFunc(int integer)
{
int i;
for(i=0;i<integer;i++)
{
?? Beep(200,50);
?? Sleep(1000);
}
}
雙擊IDC_START按鈕,完成該按鈕的消息函數: void CMultiThread2Dlg::OnStart()
{
UpdateData(TRUE);
int integer=m_nCount;
hThread=CreateThread(NULL,
?? 0,
?? (LPTHREAD_START_ROUTINE)ThreadFunc,
?? (VOID*)integer,
?? 0,
?? &ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
}
順便說一下WaitForSingleObject函數,其函數原型為:DWORD WaitForSingleObject(HANDLE hHandle,DWORD dwMilliseconds);
hHandle為要監視的對象(一般為同步對象,也可以是線程)的句柄;
dwMilliseconds為hHandle對象所設置的超時值,單位為毫秒;
當在某一線程中調用該函數時,線程暫時掛起,系統監視hHandle所指向的對象的狀態。如果在掛起的dwMilliseconds毫秒內,線程所等待的對象變為有信號狀態,則該函數立即返回;如果超時時間已經到達dwMilliseconds毫秒,但hHandle所指向的對象還沒有變成有信號狀態,函數照樣返回。參數dwMilliseconds有兩個具有特殊意義的值:0和INFINITE。若為0,則該函數立即返回;若為INFINITE,則線程一直被掛起,直到hHandle所指向的對象變為有信號狀態時為止。
本例程調用該函數的作用是按下IDC_START按鈕后,一直等到線程返回,再恢復IDC_START按鈕正常狀態。編譯運行該例程并細心體會。
例程3 MultiThread3
傳送一個結構體給一個線程函數也是可能的,可以通過傳送一個指向結構體的指針參數來完成。先定義一個結構體:
typedef struct
{
int firstArgu,
long secondArgu,
…
}myType,*pMyType;
創建線程時CreateThread(NULL,0,threadFunc,pMyType,…);
在threadFunc函數內部,可以使用“強制轉換”:
int intValue=((pMyType)lpvoid)->firstArgu;
long longValue=((pMyType)lpvoid)->seconddArgu;
……
例程3 MultiThread3將演示如何傳送一個指向結構體的指針參數。
建立一個基于對話框的工程MultiThread3,在對話框IDD_MULTITHREAD3_DIALOG中加入一個編輯框IDC_MILLISECOND,一個按鈕IDC_START,標題為“開始” ,一個進度條IDC_PROGRESS1;
打開ClassWizard,為編輯框IDC_MILLISECOND添加int型變量m_nMilliSecond,為進度條IDC_PROGRESS1添加CProgressCtrl型變量m_ctrlProgress;
在MultiThread3Dlg.h文件中添加一個結構的定義:
struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};
線程函數的聲明: UINT ThreadFunc(LPVOID lpParam);
注意,二者應在類CMultiThread3Dlg的外部。
在類CMultiThread3Dlg內部添加protected型變量: HANDLE hThread;
DWORD ThreadID;
分別代表線程的句柄和ID。
在MultiThread3Dlg.cpp文件中進行如下操作:
定義公共變量 threadInfo Info;
雙擊按鈕IDC_START,添加相應消息處理函數:
void CMultiThread3Dlg::OnStart()
{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;
hThread=CreateThread(NULL,
?? 0,
?? (LPTHREAD_START_ROUTINE)ThreadFunc,
?? &Info,
?? 0,
?? &ThreadID);
/*
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
*/
}
在函數BOOL CMultiThread3Dlg::OnInitDialog()中添加語句: {
……
// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE;?? // return TRUE?? unless you set the focus to a control
}
添加線程處理函數:
UINT ThreadFunc(LPVOID lpParam) {
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
?? int nTemp=pInfo->nMilliSecond;
?? pInfo->pctrlProgress->SetPos(i);
?? Sleep(nTemp);
}
return 0;
}
順便補充一點,如果你在void CMultiThread3Dlg::OnStart() 函數中添加/* */語句,編譯運行你就會發現進度條不進行刷新,主線程也停止了反應。什么原因呢?這是因為WaitForSingleObject函數等待子線程(ThreadFunc)結束時,導致了線程死鎖。因為WaitForSingleObject函數會將主線程掛起(任何消息都得不到處理),而子線程ThreadFunc正在設置進度條,一直在等待主線程將刷新消息處理完畢返回才會檢測通知事件。這樣兩個線程都在互相等待,死鎖發生了,編程時應注意避免。
例程4 MultiThread4
該例程測試在Windows下最多可創建線程的數目。
建立一個基于對話框的工程MultiThread4,在對話框IDD_MULTITHREAD4_DIALOG中加入一個按鈕IDC_TEST和一個編輯框IDC_COUNT,按鈕標題為“測試” , 編輯框屬性選中Read-only;
在MultiThread4Dlg.cpp文件中進行如下操作:
添加公共變量volatile BOOL m_bRunFlag=TRUE;
該變量表示是否還能繼續創建線程。
添加線程函數:
DWORD WINAPI threadFunc(LPVOID threadNum)
{
while(m_bRunFlag)
{
?? Sleep(3000);
}
return 0;
}
只要 m_bRunFlag 變量為TRUE,線程一直運行。
雙擊按鈕IDC_TEST,添加其響應消息函數:
void CMultiThread4Dlg::OnTest()
{
DWORD threadID;
GetDlgItem(IDC_TEST)->EnableWindow(FALSE);
long nCount=0;
while(m_bRunFlag)
{
?? if(CreateThread(NULL,0,threadFunc,NULL,0,&threadID)==NULL)
?? {
??? m_bRunFlag=FALSE;
??? break;
?? }
?? else
?? {
??? nCount++;
?? }
}
??? //不斷創建線程,直到再不能創建為止
m_nCount=nCount;
UpdateData(FALSE);
Sleep(5000);
??? //延時5秒,等待所有創建的線程結束
GetDlgItem(IDC_TEST)->EnableWindow(TRUE);
???? m_bRunFlag=TRUE;
}
五、MFC對多線程編程的支持
MFC中有兩類線程,分別稱之為工作者線程和用戶界面線程。二者的主要區別在于工作者線程沒有消息循環,而用戶界面線程有自己的消息隊列和消息循環。
????? 工作者線程沒有消息機制,通常用來執行后臺計算和維護任務,如冗長的計算過程,打印機的后臺打印等。用戶界面線程一般用于處理獨立于其他線程執行之外的 用戶輸入,響應用戶及系統所產生的事件和消息等。但對于Win32的API編程而言,這兩種線程是沒有區別的,它們都只需線程的啟動地址即可啟動線程來執 行任務。
????? 在MFC中,一般用全局函數AfxBeginThread()來創建并初始化一個線程的運行,該函數有兩種重載形式,分別用于創建工作者線程和用戶界面線程。兩種重載函數原型和參數分別說明如下:
(1) CWinThread* AfxBeginThread(AFX_THREADPROC pfnThreadProc,
?????????????????????? LPVOID pParam,
?????????????????????? nPriority=THREAD_PRIORITY_NORMAL,
?????????????????????? UINT nStackSize=0,
?????????????????????? DWORD dwCreateFlags=0,
?????????????????????? LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
PfnThreadProc:指向工作者線程的執行函數的指針,線程函數原型必須聲明如下: UINT ExecutingFunction(LPVOID pParam);
請注意,ExecutingFunction()應返回一個UINT類型的值,用以指明該函數結束的原因。一般情況下,返回0表明執行成功。
pParam:傳遞給線程函數的一個32位參數,執行函數將用某種方式解釋該值。它可以是數值,或是指向一個結構的指針,甚至可以被忽略;
nPriority:線程的優先級。如果為0,則線程與其父線程具有相同的優先級;
nStackSize:線程為自己分配堆棧的大小,其單位為字節。如果nStackSize被設為0,則線程的堆棧被設置成與父線程堆棧相同大小;
dwCreateFlags:如果為0,則線程在創建后立刻開始執行。如果為CREATE_SUSPEND,則線程在創建后立刻被掛起;
lpSecurityAttrs:線程的安全屬性指針,一般為NULL;
(2) CWinThread* AfxBeginThread(CRuntimeClass* pThreadClass,
?????????????????????? int nPriority=THREAD_PRIORITY_NORMAL,
?????????????????????? UINT nStackSize=0,
?????????????????????? DWORD dwCreateFlags=0,
?????????????????????? LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
pThreadClass 是指向 CWinThread 的一個導出類的運行時類對象的指針,該導出類定義了被創建的用戶界面線程的啟動、退出等;其它參數的意義同形式1。使用函數的這個原型生成的線程也有消息 機制,在以后的例子中我們將發現同主線程的機制幾乎一樣。
下面我們對CWinThread類的數據成員及常用函數進行簡要說明。
m_hThread:當前線程的句柄;
m_nThreadID:當前線程的ID;
m_pMainWnd:指向應用程序主窗口的指針
BOOL CWinThread::CreateThread(DWORD dwCreateFlags=0,
UINT nStackSize=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
該函數中的dwCreateFlags、nStackSize、lpSecurityAttrs參數和API函數CreateThread中的對應參數有相同含義,該函數執行成功,返回非0值,否則返回0。
????? 一般情況下,調用AfxBeginThread()來一次性地創建并啟動一個線程,但是也可以通過兩步法來創建線程:首先創建CWinThread類的一個對象,然后調用該對象的成員函數CreateThread()來啟動該線程。
virtual BOOL CWinThread::InitInstance();
重載該函數以控制用戶界面線程實例的初始化。初始化成功則返回非0值,否則返回0。用戶界面線程經常重載該函數,工作者線程一般不使用InitInstance()。 virtual int CWinThread::ExitInstance();
在線程終結前重載該函數進行一些必要的清理工作。該函數返回線程的退出碼,0表示執行成功,非0值用來標識各種錯誤。同InitInstance()成員函數一樣,該函數也只適用于用戶界面線程。
六、MFC多線程編程實例
在Visual C++ 6.0編程環境中,我們既可以編寫C風格的32位Win32應用程序,也可以利用MFC類庫編寫C++風格的應用程序,二者各有其優缺點。基于Win32 的應用程序執行代碼小巧,運行效率高,但要求程序員編寫的代碼較多,且需要管理系統提供給程序的所有資源;而基于MFC類庫的應用程序可以快速建立起應用 程序,類庫為程序員提供了大量的封裝類,而且Developer Studio為程序員提供了一些工具來管理用戶源程序,其缺點是類庫代碼很龐大。由于使用類庫所帶來的快速、簡捷和功能強大等優越性,因此除非有特殊的需要,否則Visual C++推薦使用MFC類庫進行程序開發。
我們知道,MFC中的線程分為兩種:用戶界面線程和工作者線程。我們將分別舉例說明。
用 MFC 類庫編程實現工作者線程
例程5 MultiThread5
為了與Win32 API對照,我們使用MFC 類庫編程實現例程3 MultiThread3。
建立一個基于對話框的工程MultiThread5,在對話框IDD_MULTITHREAD5_DIALOG中加入一個編輯框IDC_MILLISECOND,一個按鈕IDC_START,標題為“開始” ,一個進度條IDC_PROGRESS1;
打開ClassWizard,為編輯框IDC_MILLISECOND添加int型變量m_nMilliSecond,為進度條IDC_PROGRESS1添加CProgressCtrl型變量m_ctrlProgress;
在MultiThread5Dlg.h文件中添加一個結構的定義: struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};
線程函數的聲明:UINT ThreadFunc(LPVOID lpParam);
注意,二者應在類CMultiThread5Dlg的外部。
在類CMultiThread5Dlg內部添加protected型變量:
CWinThread* pThread;
在MultiThread5Dlg.cpp文件中進行如下操作:定義公共變量:threadInfo Info;
雙擊按鈕IDC_START,添加相應消息處理函數:
void CMultiThread5Dlg::OnStart()
{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;
pThread=AfxBeginThread(ThreadFunc, &Info);
}
在函數BOOL CMultiThread3Dlg::OnInitDialog()中添加語句: {
……
// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE;?? // return TRUE?? unless you set the focus to a control
}
添加線程處理函數: UINT ThreadFunc(LPVOID lpParam)
{
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
?? int nTemp=pInfo->nMilliSecond;
?? pInfo->pctrlProgress->SetPos(i);
?? Sleep(nTemp);
}
return 0;
}
用 MFC 類庫編程實現用戶界面線程
創建用戶界面線程的步驟:
使用ClassWizard創建類CWinThread的派生類(以CUIThread類為例) class CUIThread : public CWinThread
{
DECLARE_DYNCREATE(CUIThread)
protected:
CUIThread();??????????? // protected constructor used by dynamic creation
// Attributes
public:
// Operations
public:
// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CUIThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
//}}AFX_VIRTUAL
// Implementation
protected:
virtual ~CUIThread();
// Generated message map functions
//{{AFX_MSG(CUIThread)
?? // NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};
重載函數InitInstance()和ExitInstance()。 BOOL CUIThread::InitInstance()
{
CFrameWnd* wnd=new CFrameWnd;
wnd->Create(NULL,"UI Thread Window");
wnd->ShowWindow(SW_SHOW);
wnd->UpdateWindow();
m_pMainWnd=wnd;
return TRUE;
}
創建新的用戶界面線程 void CUIThreadDlg::OnButton1()
{
CUIThread* pThread=new CUIThread();
pThread->CreateThread();
}
請注意以下兩點:
A、在UIThreadDlg.cpp的開頭加入語句: #include "UIThread.h"
B、把UIThread.h中類CUIThread()的構造函數的特性由 protected 改為 public。
用戶界面線程的執行次序與應用程序主線程相同,首先調用用戶界面線程類的InitInstance()函數,如果返回TRUE,繼續調用線程的Run ()函數,該函數的作用是運行一個標準的消息循環,并且當收到WM_QUIT消息后中斷,在消息循環過程中,Run()函數檢測到線程空閑時(沒有消 息),也將調用OnIdle()函數,最后Run()函數返回,MFC調用ExitInstance()函數清理資源。
你可以創建一個沒有界 面而有消息循環的線程,例如:你可以從CWinThread派生一個新類,在InitInstance函數中完成某項任務并返回FALSE,這表示僅執行 InitInstance函數中的任務而不執行消息循環,你可以通過這種方法,完成一個工作者線程的功能。
例程6 MultiThread6
建立一個基于對話框的工程MultiThread6,在對話框IDD_MULTITHREAD6_DIALOG中加入一個按鈕IDC_UI_THREAD,標題為“用戶界面線程”
右擊工程并選中“New Class…”為工程添加基類為CWinThread派生線程類CUIThread。
給工程添加新對話框IDD_UITHREADDLG,標題為“線程對話框”。
為 對話框IDD_UITHREADDLG創建一個基于CDialog的類CUIThreadDlg。使用ClassWizard為CUIThreadDlg 類添加WM_LBUTTONDOWN消息的處理函數OnLButtonDown,如下: void CUIThreadDlg::OnLButtonDown(UINT nFlags, CPoint point)
{
AfxMessageBox("You Clicked The Left Button!");
CDialog::OnLButtonDown(nFlags, point);
}
在UIThread.h中添加 #include "UIThreadDlg.h"
并在CUIThread類中添加protected變量CUIThread m_dlg: class CUIThread : public CWinThread
{
DECLARE_DYNCREATE(CUIThread)
protected:
CUIThread();??????????? // protected constructor used by dynamic creation
// Attributes
public:
// Operations
public:
// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CUIThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
//}}AFX_VIRTUAL
// Implementation
protected:
CUIThreadDlg m_dlg;
virtual ~CUIThread();
// Generated message map functions
//{{AFX_MSG(CUIThread)
?? // NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};
分別重載InitInstance()函數和ExitInstance()函數: BOOL CUIThread::InitInstance()
{
m_dlg.Create(IDD_UITHREADDLG);
m_dlg.ShowWindow(SW_SHOW);
m_pMainWnd=&m_dlg;
return TRUE;
}
int CUIThread::ExitInstance()
{
m_dlg.DestroyWindow();
return CWinThread::ExitInstance();
}
雙擊按鈕IDC_UI_THREAD,添加消息響應函數: void CMultiThread6Dlg::OnUiThread()
{
CWinThread *pThread=AfxBeginThread(RUNTIME_CLASS(CUIThread));
}
并在MultiThread6Dlg.cpp的開頭添加: #include "UIThread.h"
好了,編譯并運行程序吧。每單擊一次“用戶界面線程”按鈕,都會彈出一個線程對話框,在任何一個線程對話框內按下鼠標左鍵,都會彈出一個消息框。
七、線程間通訊
一般而言,應用程序中的一個次要線程總是為主線程執行特定的任務,這樣,主線程和次要線程間必定有一個信息傳遞的渠道,也就是主線程和次要線程間要進行通信。這種線程間的通信不但是難以避免的,而且在多線程編程中也是復雜和頻繁的,下面將進行說明。
使用全局變量進行通信
由 于屬于同一個進程的各個線程共享操作系統分配該進程的資源,故解決線程間通信最簡單的一種方法是使用全局變量。對于標準類型的全局變量,我們建議使用 volatile 修飾符,它告訴編譯器無需對該變量作任何的優化,即無需將它放到一個寄存器中,并且該值可被外部改變。如果線程間所需傳遞的信息較復雜,我們可以定義一個 結構,通過傳遞指向該結構的指針進行傳遞信息。
?
轉載于:https://blog.51cto.com/haobinnan/658446
總結
以上是生活随笔為你收集整理的VC多线程编程之线程创建与示例的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Ubuntu Vi 编辑器 命令(转)
- 下一篇: 价值100大洋的简体中文汉化补丁下载