久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

美国数学月刊问题18-10-31

發布時間:2025/3/16 编程问答 14 豆豆
生活随笔 收集整理的這篇文章主要介紹了 美国数学月刊问题18-10-31 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Problem 12067 - 08 - P. Bracken (USA).

對于正整數$n$.令$$\beta_n=6n+12n^2(\gamma-\gamma_n),$$
其中$\gamma_n=H_n-\ln n$, $\displaystyle H_n=\sum_{j=1}^n\frac{1}{j}$為第$n$個調和數(Harmonic number),且$\gamma$為Euler常數.證明:對所有$n$,均有$\beta_{n+1}>\beta_n$.

Problem 12066 - 08 - Xiang-Qian Chang (USA).
設$n$和$k$是大于$1$的正整數, $A$是$n\times n$正定Hermite矩陣.證明
$$\left( \det A \right) ^{1/n}\le \left( \frac{\mathrm{tr}^k\left( A \right) -\mathrm{tr}\left( A^k \right)}{n^k-n} \right) ^{1/k}.$$
Problem 12064 - 08 - C. A. Hernandez Melo (Brazil).
設$f$為凸的,從$[1,\infty)$到$\mathbb{R}$的連續可微函數,使得對所有$x\geq 1$,均有$f'(x)>0$.證明反常積分$$\int_1^\infty\frac{dx}{f'(x)}$$收斂當且僅當級數$$\sum_{n=1}^\infty\left(f^{-1}(f(n)+\varepsilon)-n\right)$$對所有$\varepsilon>0$均收斂.
Problem 12063 - 08 - H. Ohtsuka (Japan).
設$p$和$q$為實數,且$p>0,q>-p^2/4$.令$U_0=0,U_1=1$,而且對于$n\geq 0$,有$U_{n+2}=pU_{n+1}+qU_n$.計算
$$\lim_{n\rightarrow \infty}\sqrt{U_{1}^{2}+\sqrt{U_{2}^{2}+\sqrt{U_{4}^{2}+\sqrt{\cdots +\sqrt{U_{2^{n-1}}^{2}}}}}}.$$
Problem 12060 - 07 - O. Furdui and A. Sintamarian (Romania).
證明$$\sum_{n=2}^{\infty}{\frac{H_nH_{n+1}}{n^3-n}}=\frac{5}{2}-\frac{\pi ^2}{24}-\zeta \left( 3 \right),$$
其中$\displaystyle H_n=\sum_{j=1}^n\frac{1}{j}$為第$n$個調和數(Harmonic number).
Problem 12057 - 07 - P. Korus (Hungary).
(a)設$a_1=1,a_2=2$且對任意正整數$k$,有
$$a_{2k+1}=\frac{a_{2k-1}+a_{2k}}{2},\quad a_{2k+2}=\sqrt{a_{2k}a_{2k+1}}.$$
求數列$\{a_n\}$的極限.
(b)設$b_1=1,b_2=2$且對任意正整數$k$,有
$$b_{2k+1}=\frac{b_{2k-1}+b_{2k}}{2},\quad b_{2k+2}=\frac{2b_{2k}b_{2k+1}}{b_{2k}+b_{2k+1}}.$$
求數列$\{b_n\}$的極限.
Problem 12054 - 06 - C. I. Valean (Romania).
證明$$\int_0^1{\frac{\arctan x}{x}\ln \frac{1+x^2}{\left( 1-x \right) ^2}dx}=\frac{\pi ^3}{16}.$$
Problem 12051 - 06 - P. Ribeiro (Portugal).
證明$$
\sum_{n=0}^{\infty}{\left( \begin{array}{c}
2n\\
n\\
\end{array} \right) \frac{1}{4^n\left( 2n+1 \right) ^3}}=\frac{\pi ^3}{48}+\frac{\pi \ln ^22}{4}.
$$
Problem 12049 - 06 - Z. K. Silagadze (Russia).
對所有滿足$m\leq n$的非負整數$m$和$n$.證明
$$
\sum_{k=m}^n{\frac{\left( -1 \right) ^{k+m}}{2k+1}\left( \begin{array}{c}
n+k\\
n-k\\
\end{array} \right) \left( \begin{array}{c}
2k\\
k-m\\
\end{array} \right)}=\frac{1}{2n+1}.
$$

?

https://math.stackexchange.com/q/876106/165013

prove that this integral

$$\int_{0}^{\infty}\dfrac{dx}{(1+x^2)(1+r^2x^2)(1+r^4x^2)(1+r^6x^2)\cdots}=
\dfrac{\pi}{2(1+r+r^3+r^6+r^{10}+\cdots}$$

for this integral,I can't find it.and I don't know how deal this such strange integral.

and this problem is from china QQ (someone ask it)

before I ask this question:
https://math.stackexchange.com/questions/671964/how-find-this-integral-fy-int-infty-infty-fracdx1x21xy2?rq=1


?

If we set
$$ f(x)=\prod_{n=0}^{+\infty}(1+r^{2n}x^2) $$
we have:
$$\int_{0}^{+\infty}\frac{dx}{f(x)}=\pi i\sum_{m=0}^{+\infty}\operatorname{Res}\left(f(z),z=\frac{i}{r^m}\right)=\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}\tag{1}$$
but since
$$ \prod_{n=0}^{+\infty}(1-x^n z)^{-1}=\sum_{n=0}^{+\infty}\frac{z^n}{(1-x)\cdot\ldots\cdot(1-x^n)}$$
is one of the Euler's partitions identities, and:
$$\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\sum_{m=0}^{+\infty}\frac{(1/r)^m}{(1-(1/r^2))\cdot\ldots\cdot(1-(1/r^2)^m)}$$
we have:
$$\int_{0}^{+\infty}\frac{dz}{f(z)}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\prod_{m=0}^{+\infty}\left(1-\frac{1}{r^{2m+1}}\right)^{-1}\tag{2}$$
and the claim follows from the Jacobi triple product identity:
$$\sum_{k=-\infty}^{+\infty}s^k q^{\binom{k+1}{2}}=\prod_{m\geq 1}(1-q^m)(1+s q^m)(1+s^{-1}q^{m-1}).$$


?

Find this integral
$$F(y)=\int_{-\infty}^{\infty}\dfrac{dx}{(1+x^2)(1+(x+y)^2)}$$


?

How about using the residue theorem? We have
$$F(y)= 2\pi i \sum_{x^*} \mathop{\rm Res}_{x=x^*} f(x),$$
where the sum ranges over all the poles of the integrand $$f(x)= \frac1{(1+x^2)[1+(x+y)^2]}$$ in the upper half-plane. These poles are situated at $x^*= i, i-y$ (assuming $y$ to be real).

As the poles are simple poles, we obtain the residues by
$$ \mathop{\rm Res}_{x=x^*} f(x) =\lim_{x\to x^*} (x-x^*)f(x) .$$
Thus, we have
$$ \mathop{\rm Res}_{x=i} f(x) = \frac{1}{2 i [1+(i + y)^2]}$$
and
$$ \mathop{\rm Res}_{x=i-y} f(x) = \frac{1}{2 i [1+(i-y)^2]}.$$

So, we obtain
$$ F(y) = \pi \left[\frac{1}{1+(i + y)^2} +
\frac{1}{1+(i-y)^2} \right] = \frac{2 \pi}{4+y^2}$$
as the final result.


?


?

?

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=114058

Fejer三角多項式不等式


?

https://math.stackexchange.com/q/2122045/165013

In a letter to Hardy, Ramanujan described a simple identity valid for $0<a<b+\frac 12$:

> $$\small\int\limits_{0}^{\infty}\frac {1+\dfrac {x^2}{(b+1)^2}}{1+\dfrac {x^2}{a^2}}\dfrac {1+\dfrac {x^2}{(b+2)^2}}{1+\dfrac {x^2}{(a+1)^2}}\dfrac {1+\dfrac {x^2}{(b+3)^2}}{1+\dfrac {x^2}{(a+2)^2}}\cdots \, dx=\dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}\tag1$$

Which I find remarkable.

>**Questions:**

1. Has anyone discovered a way to prove $(1)$? If so, how do you prove it?
2. Where did Ramanujan learn all of his integrational-calculus material (It doesn't appear in the *Synopsis book*)?
3. Does anyone know a pdf or book where I can start learning advanced integration?

----------
I'm wondering how you would prove $(1)$ and if there are similar identities that can be made. Wikipedia doesn't have any information.


>**Proposition 1 :**$$\color{blue}{\displaystyle \sum\limits_{k=1}^\infty \dfrac{(-1)^{k-1}}{k}\;\zeta_H(k,a)x^k \; =\; \ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\tag1}$$

**Proof :**

$$\begin{align*} & \displaystyle \sum\limits_{k=0}^{\infty}(-x)^{k}\zeta_H(k+1,a)\\ & \displaystyle = \sum\limits_{k,n=0}^{\infty} \dfrac{(-x)^k}{(n+a)^{k+1}}\\ & \displaystyle = \sum\limits_{n=0}^\infty \dfrac{1}{n+a}\sum\limits_{k=0}^\infty \left(\dfrac{-x}{n+a}\right)^k \\ & \displaystyle = \sum\limits_{n=0}^\infty \dfrac{1}{n+a+x} \\ & \displaystyle = -\psi(a+x)\end{align*}$$

Now integrating,

$$\displaystyle \sum\limits_{k=1}^{\infty} \dfrac{(-1)^{k-1}}{k}\zeta_H(k,a)x^k =\ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\\ $$


>**Proposition 2 :**$$\color{blue}{\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x^2}{(n+a)^2}\right)\;=\; \dfrac{\Gamma^2 (a)}{\Gamma(a+ix)\Gamma(a-ix)}\tag 2} $$

**Proof :**

It is sufficient to evaluate the series,

$$\begin{align*} & \displaystyle\sum\limits_{n=0}^{\infty}\ln\left(1+\dfrac{x}{n+a}\right) \\ & = \displaystyle \sum\limits_{k=1}^\infty\sum\limits_{n=0}^\infty \dfrac{(-1)^{k-1}}{k}x^k \dfrac{1}{(n+a)^k} \\ & =\displaystyle \sum\limits_{k=1}^{\infty} \dfrac{(-1)^{k-1}}{k}\zeta_H(k,a)x^k \\ & =\displaystyle \ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\end{align*}$$

$$\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x}{n+a}\right) = \dfrac{\Gamma(a)}{\Gamma(a+x)}$$

Therefore,

$$\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x^2}{(n+a)^2}\right)\;=\; \dfrac{\Gamma^2 (a)}{\Gamma(a+ix)\Gamma(a-ix)}$$

>Proposition 3 : If $\; \displaystyle F(s)=\int\limits_0^\infty x^{s-1}f(x)\; dx\; $ then $$\color{blue}{\displaystyle \int\limits_{-\infty}^{\infty} |F(ix)|^2 \; dx \;= \; 2\pi\int\limits_0^\infty \dfrac{|f(x)|^2}{x}\; dx\tag 3} $$

**Proof :**

$$\displaystyle F(it)=\int\limits_0^\infty x^{it}\dfrac{f(x)}{x}\; dx$$

Set $x=e^y$ ,

$$\displaystyle F(it)=\int\limits_0^\infty e^{ixt}f(e^x)\; dx$$

Now by properties of Fourier Transform,

$$\begin{align*} & \displaystyle f(e^t)=\int\limits_{-\infty}^\infty g(x)e^{-ixt}\; dx \\ & \displaystyle g(t)=\dfrac{1}{2\pi}\int\limits_{-\infty}^\infty f(e^x)e^{ixt}\; dx\\\end{align*}$$

$$\begin{align*}\displaystyle F(it) & =2\pi g(t) \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 4\pi^2 \int\limits_{-\infty}^\infty |g(t)|^2\; dt \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty g(t) \int\limits_{-\infty}^\infty e^{ixt}f(e^x)\; dx\; dt \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty f(e^x) \int\limits_{-\infty}^\infty e^{ixt}g(t)\; dt\; dx \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty f(e^x)\overline{f(e^x)}\; dx =2\pi\int\limits_{-\infty}^\infty |f(e^x)|^2\; dx\end{align*}$$

Now by setting $e^x=t$ we get our result,

$$\displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt = 2\pi\int\limits_{-\infty}^\infty \dfrac{|f(t)|^2}{t}\; dt$$

>**Main Problem:** $$\color{blue}{\displaystyle \int\limits_{0}^{\infty}\frac {1+\dfrac {x^2}{(b+1)^2}}{1+\dfrac {x^2}{a^2}}\dfrac {1+\dfrac {x^2}{(b+2)^2}}{1+\dfrac {x^2}{(a+1)^2}}\dfrac {1+\dfrac {x^2}{(b+3)^2}}{1+\dfrac {x^2}{(a+2)^2}}\cdots \, dx=\dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}} $$

**Proof :** If we denote the integral by $I$ then using $(2)$ it can be rewritten as,

$$\displaystyle I = \dfrac{\Gamma^2 (b+1)}{\Gamma^2 (a)}\dfrac{1}{2} \int\limits_{-\infty}^\infty \dfrac{|\Gamma(a+ix)|^2}{|\Gamma(b+1+ix)|^2}\; dx$$

Now by defining $\displaystyle h(x)=\dfrac{x^a (1-x)^{b-a}}{\Gamma(b-a+1)}$ for $x\in[0,1]$ and $0$ for $\forall x\notin[0,1]$ (Just like done in the link in the comment) we can conclude that $\displaystyle F(s)=M[h(x)]=\dfrac{\Gamma(s+a)}{\Gamma(s+b+1)}$ and from $(3)$ it follows that,

$$\displaystyle I = \dfrac{\Gamma^2 (b+1)}{\Gamma^2 (a)}\dfrac{1}{2} \int\limits_{0}^1 \dfrac{|h(x)|^2}{x}\; dx = \dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}$$

where last line follows from the Duplication formula , and we are done !

$$\large \color{red}{\color{blue}{\boxed{\mathfrak{PROVED}}}} $$


https://mathoverflow.net/questions/66812/ramanujans-eccentric-integral-formula

The wikipedia page on [Srinivasa Ramanujan][1] gives a very strange formula:

> **Ramanujan:** If $0 < a < b + \frac{1}{2}$ then, $$\int\limits_{0}^{\infty} \frac{ 1 + x^{2}/(b+1)^{2}}{ 1 + x^{2}/a^{2}} \times \frac{ 1 + x^{2}/(b+2)^{2}}{ 1 + x^{2}/(a+1)^{2}} \times \cdots \ \textrm{dx} = \frac{\sqrt{\pi}}{2} \small{\frac{ \Gamma(a+\frac{1}{2}) \cdot \Gamma(b+1)\: \Gamma(b-a+\frac{1}{2})}{\Gamma(a) \cdot \Gamma(b+\frac{1}{2}) \cdot \Gamma(b-a+1)}}$$

- Question I would like to pose to this community is: What could be the Intuition behind discovering this formula.


- Next, I see that Ramanujan has discovered a lot of formulas for expressing $\pi$ as series. May I know what is the advantage of having a same number expressed as a series in a different way. Is it useful at all?

- From what I know Ramanujan basically worked on *Infinite series, Continued fractions,* $\cdots$ etc. I have never seen applications of *continued fractions*, in the real world. I would also like to know if continued fractions has any applications.

Hope I haven't asked too many questions. As I was posting this question the last question on *application of continued fractions* popped up and I thought it would be a good idea to pose it here, instead of posing it as a new question.


[1]: http://en.wikipedia.org/wiki/Srinivasa_Ramanujan


?

This is one of those precious cases when Ramanujan himself provided (a sketch of) a proof. The identity was published in his paper ["Some definite integrals"][1] (*Mess. Math.* 44 (1915), pp. 10-18) together with several related formulae.

It might be instructive to look first at the simpler identity (i.e. the limiting case when $b\to\infty$; the identity mentioned in the original question can be obtained by a similar approach):
$$\int\limits_{0}^{\infty} \prod_{k=0}^{\infty}\frac{1}{ 1 + x^{2}/(a+k)^{2}}dx = \frac{\sqrt{\pi}}{2} \frac{ \Gamma(a+\frac{1}{2})}{\Gamma(a)},\quad a>0.\qquad\qquad\qquad(1)$$
Ramanujan derives (1) by using a partial fraction decomposition of the product $\prod_{k=0}^{n}\frac{1}{ 1 + x^{2}/(a+k)^{2}}$, integrating term-wise, and passing to the limit $n\to\infty$. He also indicates that alternatively (1) is implied by the factorization
$$\prod_{k=0}^{\infty}\left[1+\frac{x^2}{(a+k)^2}\right] = \frac{ [\Gamma(a)]^2}{\Gamma(a+ix)\Gamma(a-ix)},$$
which follows readily from Euler's product formula for the gamma function. Thus (1) is equivalent to the formula
$$\int\limits_{0}^{\infty}\Gamma(a+ix)\Gamma(a-ix)dx=\frac{\sqrt{\pi}}{2} \Gamma(a)\Gamma\left(a+\frac{1}{2}\right).$$

------------------------------------------------------------------

There is a nice paper ["Wallis-Ramanujan-Schur-Feynman"][2] by Amdeberhan et al (*American Mathematical Monthly* 117 (2010), pp. 618-632) that discusses interesting combinatorial aspects of formula (1) and its generalizations.

?



[1]: http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper11/page1.htm
[2]: http://arminstraub.com/files/publications/ws.pdf


?

?

https://math.stackexchange.com/q/434933/165013

Wikipedia [informs][1] me that

$$S = \vartheta(0;i)=\sum_{n=-\infty}^\infty e^{-\pi n^2} = \frac{\sqrt[4] \pi}{\Gamma\left(\frac 3 4\right)}$$

I tried considering $f(x,n) = e^{-x n^2}$ so that its Mellin transform becomes $\mathcal{M}_x(f)=n^{-2z} \Gamma(z)$ so inverting and summing

$$\frac{1}{2}(S-1)=\sum_{n=1}^\infty f(\pi,n)=\sum_{n=1}^\infty \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}n^{-2z} \Gamma(z)\pi^{-z}\,dz = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta(2z) \Gamma(z) \pi^{-z}\,dz$$

However, this last integral (whose integrand has poles at $z=0,\frac{1}{2}$ with respective residues of $-\frac 1 2$ and $\frac 1 2$) is hard to evaluate due to the behavior of the function as $\Re(z)\to \pm\infty$ which makes a classic infinite contour over the entire left/right plane impossible.

How does one go about evaluating this sum?


[1]: http://en.wikipedia.org/wiki/Theta_function#Explicit_values


This one is a direct evaluation of elliptic integrals. Jacobi's theta function $\vartheta_{3}(q)$ is defined via the equation $$\vartheta_{3}(q) = \sum_{n = -\infty}^{\infty}q^{n^{2}}\tag{1}$$ Let $0 < k < 1$ and $k' = \sqrt{1 - k^{2}}$ and we define elliptic integrals $K, K'$ via $$K(k) = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - k^{2}\sin^{2}x}}, K = K(k), K' = K(k')\tag{2}$$ Then it is [almost a miracle][1] that we can get $k$ in terms of $K, K'$ via the variable $q = e^{-\pi K'/K}$ using equations $$k = \frac{\vartheta_{2}^{2}(q)}{\vartheta_{3}^{2}(q)}\tag{3}$$ where $\vartheta_{2}(q)$ is another theta function of Jacobi defined by $$\vartheta_{2}(q) = \sum_{n = -\infty}^{\infty}q^{(n + (1/2))^{2}}\tag{4}$$ Also the function $\vartheta_{3}(q)$ is directly related to $K$ via $$\vartheta_{3}(q) = \sqrt{\frac{2K}{\pi}}\tag{5}$$ The proofs of $(3)$ and $(5)$ are given in the linked post on my blog.

--------

The sum in the question is $\vartheta_{3}(e^{-\pi})$ so that we have $q = e^{-\pi}$. This implies that $K'/K = 1$ so that $k = k'$ and from $k^{2} + k'^{2} = 1$ we get $k^{2} = 1/2$. And then $$\vartheta_{3}(q) = \sqrt{\frac{2K}{\pi}} = \sqrt{\frac{2}{\pi}\cdot\frac{\Gamma^{2}(1/4)}{4\sqrt{\pi}}} = \frac{\Gamma(1/4)}{\pi^{3/4}\sqrt{2}}$$ Now using $\Gamma(1/4)\Gamma(3/4) = \pi/\sin(\pi/4) = \pi\sqrt{2}$ we get $$\sum_{n = -\infty}^{\infty}e^{-\pi n^{2}} = \vartheta_{3}(e^{-\pi}) = \frac{\sqrt[4]{\pi}}{\Gamma(3/4)}$$ The value of $K = K(1/\sqrt{2})$ in terms of $\Gamma(1/4)$ is evaluated in [this answer][2].


[1]: http://paramanands.blogspot.com/2010/10/the-magic-of-theta-functions.html
[2]: https://math.stackexchange.com/a/1793756/72031


https://math.stackexchange.com/questions/363004/series-involving-log-left-tanh-frac-pi-k2-right/1793756#1793756

I found an interesting series

$$\sum_{k=1}^\infty \log \left(\tanh \frac{\pi k}{2} \right)=\log(\vartheta_4(e^{-\pi}))=\log \left(\frac{\pi^{\frac{1}{4}}}{2^{\frac{1}{4}}\Gamma \left( \frac{3}{4}\right)} \right)$$

- Does anybody know how to approach this series using Jacobi Theta Function?
- Also, can any one suggest any good papers/books on Jacobi theta functions and Jacobi Elliptic functions?

Thank you very much!


?

We have $$\vartheta_{4}(q) = \prod_{n = 1}^{\infty}(1 - q^{2n})(1 - q^{2n - 1})^{2}\tag{1}$$ It is easily seen that the above product can be written as $$\prod_{n = 1}^{\infty}(1 - q^{2n})\cdot\frac{(1 - q^{n})^{2}}{(1 - q^{2n})^{2}} = \prod_{n = 1}^{\infty}\frac{(1 - q^{n})^{2}}{1 - q^{2n}} = \prod_{n = 1}^{\infty}\frac{1 - q^{n}}{1 + q^{n}}\tag{2}$$ Putting $q = e^{-\pi}$ and noting that $$\tanh(n\pi/2) = \frac{e^{n\pi/2} - e^{n\pi/2}}{e^{n\pi/2} + e^{n\pi/2}} = \frac{1 - e^{-n\pi}}{1 + e^{-n\pi}} = \frac{1 - q^{n}}{1 + q^{n}}\tag{3}$$ we have via virtue of equations $(1), (2), (3)$ $$\vartheta_{4}(e^{-\pi}) = \prod_{n = 1}^{\infty}\tanh\left(\frac{n\pi}{2}\right)$$ so that the first equality is proved.

Now to calculate the value of $\vartheta_{4}(q)$ for $q = e^{-\pi}$ note that $$\vartheta_{4}(q) = \frac{\vartheta_{4}(q)}{\vartheta_{3}(q)}\cdot \vartheta_{3}(q) = \sqrt{k'}\sqrt{\frac{2K}{\pi}}\tag{4}$$ For $q = e^{-\pi}$ we have $k = k' = 1/\sqrt{2}$ and $$K = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - (1/2)\sin^{2}x}} = \frac{1}{4\sqrt{\pi}}\Gamma^{2}\left(\frac{1}{4}\right)\tag{5}$$ and hence $$\vartheta_{4}(e^{-\pi}) = 2^{-3/4}\pi^{-3/4}\Gamma(1/4)$$ and noting that $$\Gamma(1/4)\Gamma(3/4) = \frac{\pi}{\sin(\pi/4)} = \sqrt{2}\pi$$ we get $$\vartheta_{4}(e^{-\pi}) = \frac{\pi^{1/4}}{2^{1/4}\Gamma(3/4)}$$ so that the second equality of the question is also proved.

-------

The integral in $(5)$ is easily evaluated via the use of beta and gamma functions. Thus
\begin{align}
K &= K(1/\sqrt{2}) = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - (1/2)\sin^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{\pi/2}\frac{dx}{\sqrt{2 - \sin^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{\pi/2}\frac{dx}{\sqrt{1 + \cos^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{1}\frac{dt}{\sqrt{1 - t^{4}}}\text{ (by putting }t = \cos x)\notag\\
&= \frac{\sqrt{2}}{4}\int_{0}^{1}x^{-3/4}(1 - x)^{-1/2}\,dx\text{ (by putting }t^{4} = x)\notag\\
&= \frac{\sqrt{2}}{4}B\left(\frac{1}{4}, \frac{1}{2}\right)\notag\\
&= \frac{\sqrt{2}}{4}\cdot\dfrac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma^{2}\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma^{2}\left(\frac{1}{4}\right)}{\dfrac{\pi}{\sin(\pi/4)}}\notag\\
&= \frac{1}{4\sqrt{\pi}}\Gamma^{2}\left(\frac{1}{4}\right)\notag
\end{align}

-------

**Update**: Apparently I forgot to shed some light on the second question asked by OP namely any references/books on the theory of Jacobi Elliptic and Theta functions. This I deal with now.

The theory of Elliptic functions and theta functions is a very fascinating one. My own sources of study in this field are the following books (order of the books listed is not important here):

- *A Course of Modern Analysis* by Whittaker and Watson: A definitive resource for many many topics apart from theta functions. The focus here is on using the methods of complex analysis to develop a theory of elliptic and theta functions.
- *An Elementary Treatise on Elliptic Functions* by Cayley: This book develops the theory of elliptic functions in a very elementary fashion and I learnt most of the topic from this book. The presentation is easy to follow and does not require any deep skills apart from a good knowledge of calculus.
- *Elliptic Functions* by Armitage and Eberlein: This is another good book from Cambridge University Press which I read. It uses both elementary techniques as well as complex analysis to develop the theory of elliptic functions.
- *Pi and the AGM* by Borwein and Borwein: This is a truly singular book which connects elliptic integrals with Arithmetic Geometric Mean and is an interesting but somewhat difficult read.
- *Ramanujan Notebooks Vol 3* by Berndt: Ramanujan developed his own theory of theta functions independently of Jacobi and went far ahead, but his techniques are mostly unknown and Berndt has tried to discern his methods (to some extent) and establish most of his formulas in the theory of theta functions.
- *Collected Papers of Ramanujan* : There are some papers dealing with some applications of theory of theta functions. The value of this book is to get an insight into some of the techniques Ramanujan used. In particular one must read his monumental paper "Modular Equations and Approximations to $\pi$".
- *Fundamenta Nova* by Jacobi: This is a very good book but unfortunately written in Latin. I did manage to study some parts with the help of google translate and you can give it a try if you are willing to put extra effort of translation.

All the above books combined together cover most of the elementary and some advanced topics related to elliptic and theta functions *except its link with the algebraic number theory* (mainly the link with imaginary quadratic extensions of $\mathbb{Q}$). This is perhaps the most important and deep topic which is now famous by the name of *modular forms*. Unfortunately I don't have much knowledge on this topic.

The references listed above can be found online for free (if you search enough). I have tried to extract material from these references and present a coherent theory of elliptic integrals/functions and theta functions in [my blog posts][1] (in fact I started blogging only to document whatever I had learnt about these mysterious theta functions). The blog also contains the Ramanujan's theory of theta functions and the Borwein's approach via Arithmetic Geometric Mean. The advantage of the blog posts is that they are concise and are written in a particular order such that pre-requisites for proving a result are discussed before presenting the result.

[1]: https://paramanands.blogspot.in/p/archives.html


https://math.stackexchange.com/questions/1922440/proving-left-sum-n-infty-infty-e-pi-n2-right2-1-4-sum-n

>**Prove That :**

>$$ S^2 = 1 + 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{e^{(2n+1)\pi} - 1} $$

>**where** $\displaystyle S = \sum_{n=-\infty}^{\infty} e^{- \pi n^2}$

In [this answer](https://math.stackexchange.com/questions/434933/proving-sum-n-infty-infty-e-pi-n2-frac-sqrt4-pi-gamma-left) by the user [@Sangchul Lee](https://math.stackexchange.com/users/9340/sangchul-lee), the above identity is claimed. Can we prove it without calculating the two sums separately?

Any help will be appreciated.
Thanks in advance.


?

Let we set
$$ r_2(n) = \left|\{(a,b)\in\mathbb{Z}\times\mathbb{Z}: a^2+b^2=n \}\right|\tag{1}$$
as the arithmetic function that counts the number of representation as a sum of two integer squares. By Cauchy convolution we clearly have (by setting $x=e^{-\pi}$)
$$ S^2 = \sum_{n\geq 0} r_2(n)\,x^n =1+\sum_{n\geq 1}r_2(n)\,x^n\tag{2}$$
while the other series mentioned in the question is a [Lambert series][1]. By setting
$$ d_1(n) = |\{d\mid n : d\equiv 1\pmod{4}\}|,\\ d_3(n) = |\{d\mid n : d\equiv 3\pmod{4}\}|\phantom{\,}\tag{3} $$
the question boils down to proving that
$$ r_2(n) = 4\left(d_1(n)-d_3(n)\right) = 4(\chi * 1)(n) = 4\sum_{d\mid n}\chi(d) \tag{4}$$
where $\chi$ is the non-principal [Dirichlet character][2] $\!\!\pmod{4}$.<br>
By [Lagrange's identity][3], the set of numbers equal to a sum of two integer squares is a semigroup. $r_2(n)$ depends on the number of ways for writing $n$ as $z\cdot\bar{z}$, with $z=a+ib$. $\mathbb{Z}[i]$ is a Euclidean domain and so a UFD, and every integer prime $p$ splits in $\mathbb{Z}[i]$ as $z\cdot \bar{z}$ iff $p=2$ or $p\equiv 1\pmod{4}$ (that can be proved by Fermat's descent, for instance). It follows that $r_2(n)$ is a constant times a multiplicative function, given by the convolution between $\chi$ and $1$, and the previous constant is exactly the number of invertible elements in $\mathbb{Z}[i]$, namely $4$ ($1,-1,i,-i$).<br>

This is not the only way for proving the claim. Another chance is given by [Jacobi triple product][4] and differentiation. See, for instance, [Varouchas, *Démonstration élémentaire d'une Identité de Lorenz*][5].


[1]: https://en.wikipedia.org/wiki/Lambert_series
[2]: https://en.wikipedia.org/wiki/Dirichlet_character
[3]: https://en.wikipedia.org/wiki/Lagrange%27s_identity
[4]: https://en.wikipedia.org/wiki/Jacobi_triple_product
[5]: http://link.springer.com/article/10.1023/A:1009732927027


This is a standard property of theta functions. Let $\vartheta_{3}(q)$ denote one of the Jacobi theta functions defined by $$\vartheta_{3}(q) = \sum_{n = -\infty}^{\infty}q^{n^{2}}\tag{1}$$ Then it is possible to show that $$
\vartheta_{3}^{2}(q) = 1 + 4\sum_{n = 1}^{\infty}\frac{q^{n}}{1 + q^{2n}}\tag{2}$$ and the sum on right can be written as a double sum $$\sum_{n = 1}^{\infty}\frac{q^{n}}{1 + q^{2n}} = \sum_{n = 1}^{\infty}q^{n}\sum_{m = 0}^{\infty}(-1)^{m}q^{2mn}$$ and interchanging order of summation we get $$\sum_{n = 1}^{\infty}\sum_{m = 0}^{\infty}(-1)^{m}q^{(2m + 1)n} = \sum_{m = 0}^{\infty}(-1)^{m}\sum_{n = 1}^{\infty}q^{(2m + 1)n} = \sum_{m = 0}^{\infty}(-1)^{m}\frac{q^{2m + 1}}{1 - q^{2m + 1}}\tag{3}$$ and hence from $(2)$ and $(3)$ we get $$\vartheta_{3}^{2}(q) = 1 + 4\sum_{n = 0}^{\infty}(-1)^{n}\frac{q^{2n + 1}}{1 - q^{2n + 1}}\tag{4}$$ Using $(1)$ and putting $q = e^{-\pi}$ we get $$\left(\sum_{n = -\infty}^{\infty}e^{-\pi n^{2}}\right)^{2} = 1 + 4\sum_{n = 0}^{\infty}\frac{(-1)^{n}}{e^{(2n + 1)\pi} - 1}$$ So we are left with proving the fundamental identity $(2)$. This is easily proved by using the [Fourier series for elliptic function $\operatorname{dn}(u, k)$][1] given by $$\operatorname{dn}(u, k) = \frac{\pi}{2K} + \frac{2\pi}{K}\sum_{n = 1}^{\infty}\frac{q^{n}\cos (n\pi u/K)}{1 + q^{2n}}\tag{5}$$ and putting $u = 0$ and noting that $\operatorname{dn}(u, k) = 1$ and $2K/\pi = \vartheta_{3}^{2}(q)$. The identity $(4)$ i.e. $$\left(\sum_{n = -\infty}^{\infty}q^{n^{2}}\right)^{2} = 1 + 4\sum_{n = 0}^{\infty}(-1)^{n}\frac{q^{2n + 1}}{1 - q^{2n + 1}}$$ can also be [proved directly by using Jacobi's Triple Product][2].

------

The answer by Jack D'Aurizio proves the number theoretic interpretation of identity $(4)$ and thereby establishes $(4)$. Also note that Ramanujan was able to square the identity $(4)$ by direct algebraical manipulation to prove that $$\left(\sum_{n = -\infty}^{\infty}q^{n^{2}}\right)^{4} = 1 + 8\sum_{n = 1}^{\infty}\frac{nq^{n}}{(1 + (-q)^{n})}\tag{6}$$ (put $\theta = \pi/2$ in equation $(16)$ of [this post][3]). This identity also has number theoretic interpretation that $$r_{4}(n) = 8\sum_{d\mid n}d$$ if $n$ is odd and $$r_{4}(n) = 24\sum_{d \text{ odd }d\mid n}d$$ when $n$ is even where $r_{4}(n)$ is the number of ways in which a positive integer $n$ can be expressed as the sum of squares of $4$ integers (counting order as well as sign of integers). A simple corollary is that every positive integer $n$ can be expressed as a sum of four squares.


[1]: http://paramanands.blogspot.com/2011/02/elliptic-functions-fourier-series.html
[2]: https://math.stackexchange.com/a/737894/72031
[3]: http://paramanands.blogspot.com/2013/05/certain-lambert-series-identities-and-their-proof-via-trigonometry-part-1.html


?

https://math.stackexchange.com/questions/971574/prove-that-sum-k-0-infty-frac116k-left-frac120k2-151k-47512

How to prove the following identity
$$\sum_{k=0}^\infty \frac{1}{16^k} \left(\frac{120k^2 + 151k + 47}{512k^4 + 1024k^3 + 712k^2 + 194k + 15}\right) = \pi$$
I am totally clueless in this one. Would you help me, please? Any help would be appreciated. Thanks in advance.


This is the now famous Bailey–Borwein–Plouffe formula, see

http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula,

http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/digits.pdf.


Here is a summary of the proof given by Bailey, Borwein, Borwein, and Plouffe in [The Quest for Pi](http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/pi-quest.pdf) in only a few lines of integration.

To begin they note the following definite integrals as summations, $n=1,\ldots,7$:

$$ \int_0^{\frac{1}{\sqrt{2}}} \frac{x^{n-1}}{1-x^8} dx =
\int_0^{\frac{1}{\sqrt{2}}} \sum_{k=0}^\infty x^{n-1+8k} dx =
\frac{1}{2^{n/2}} \sum_{k=0}^\infty \frac{1}{16^k(8k+n)} $$

If the fractional factor of the summation in the Question is expanded by partial fractions:

$$ \frac{120k^2 + 151k + 47}{512k^4 + 1024k^3 + 712k^2 + 194k + 15} =
\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} $$

then the integrals above can be applied to give:

$$ \sum_{k=0}^\infty \frac{1}{16^k} \left( \frac{4}{8k+1} - \frac{2}{8k+4}
- \frac{1}{8k+5} - \frac{1}{8k+6} \right) $$

$$ = \int_0^{\frac{1}{\sqrt{2}}}\frac{4\sqrt{2} -8x^3 -4\sqrt{2}x^4 -8x^5}{1-x^8} dx
$$

At this point the authors claim a substitution of $y= x \sqrt{2}$, making:

$$ \int_0^{\frac{1}{\sqrt{2}}}\frac{4\sqrt{2} -8x^3 -4\sqrt{2}x^4 -8x^5}{1-x^8} dx =
\int_0^1 \frac{16y-16}{y^4-2y^3+4y-4} dy $$

Finally the last integral may be expanded by partial fractions to give:

$$ \int_0^1 \frac{4y}{y^2-2} dy - \int_0^1 \frac{4y-8}{y^2-2y+2} dy = \pi $$

By way of explanation the authors point out that this rigorous proof was sought only after the discovery of the apparent [integer relations](https://en.wikipedia.org/wiki/Integer_relation_algorithm) among summations and $\pi$ via the [PSLQ algorithm](http://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00995-3/S0025-5718-99-00995-3.pdf).


?

?

https://math.stackexchange.com/a/1703019/165013

How to calculate this relation?

$$I=\int_{0}^{1}\frac{(\arctan x)^2}{1+x^{2}}\ln\left ( 1+x^{2} \right )\mathrmze8trgl8bvbqx=\frac{\pi^3}{96}\ln{2}-\frac{3\pi\zeta{(3)}}{128}-\frac{\pi^2G}{16}+\frac{\beta{(4)}}{2}$$
Where G is the Catalan's constant, and $$\beta(x)=\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)^{x}}$$ is the Dirichlet's beta function.
Integrate by parts $$u=(\arctan{\,x})^2\ln{(1+x^2)}$$ $$v=\arctan{\,x}$$
We have $$3I=\frac{\pi^3}{64}\ln{2-2\int_0^{1}x(\arctan{\,x})^3}\frac{dx}{1+x^2}$$

But how to calculate the latter integral?Could anybody please help by offering useful hints or solutions?Ithing very difficult to prove.


Take $\arctan\left(x\right)=u,\,\frac{dx}{1+x^{2}}=du
$. Then $$I=\int_{0}^{1}\frac{\left(\arctan\left(x\right)\right)^{2}}{1+x^{2}}\log\left(1+x^{2}\right)dx=\int_{0}^{\pi/4}u^{2}\log\left(1+\tan^{2}\left(u\right)\right)du
$$ $$=-2\int_{0}^{\pi/4}u^{2}\log\left(\cos\left(u\right)\right)du
$$ and now using the Fourier series $$\log\left(\cos\left(u\right)\right)=-\log\left(2\right)-\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(2ku\right)}{k},\,0\leq x<\frac{\pi}{2}
$$ we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}+2\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k}\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du
$$ and the last integral is trivial to estimate $$\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du=\frac{\pi^{2}\sin\left(\frac{\pi k}{2}\right)}{32k}-\frac{\sin\left(\frac{\pi k}{2}\right)}{4k^{3}}+\frac{\pi\cos\left(\frac{\pi k}{2}\right)}{8k^{2}}
$$ so we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}+\pi^{2}\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{16k^{2}}-\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{2k^{4}}+\pi\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(\frac{\pi k}{2}\right)}{4k^{3}}
$$ and now observing that $$\cos\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv2\,\mod\,4\\
1, & k\equiv0\,\mod\,4\\
0, & \textrm{otherwise}
\end{cases}
$$ and $$ \sin\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv3\,\mod\,4\\
1, & k\equiv1\,\mod\,4\\
0, & \textrm{otherwise}
\end{cases}
$$ we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}-\frac{\pi^{2}}{16}K+\frac{\beta\left(4\right)}{2}-\frac{3\pi\zeta\left(3\right)}{128}\approx 0.064824$$ where the last sum is obtained using the relation between [Dirichlet eta function][1] and Riemann zeta function.
[1]:http://mathworld.wolfram.com/DirichletEtaFunction.html


https://math.stackexchange.com/questions/407420/evaluating-int-11-frac-arctanx1x-ln-left-frac1x22-right?rq=1

This is a nice problem. I am trying to use nice methods to solve this integral, But I failed.

$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx, $$

where $\arctan{x}=\tan^{-1}{x}$

mark: this integral is my favorite one. Thanks to whoever has nice methods.

I have proved the following:

$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=\sum_{n=1}^{\infty}\dfrac{2^{n-1}H^2_{n-1}}{nC_{2n}^{n}}=\dfrac{\pi^3}{96}$$

where $$C_{m}^{n}=\dfrac{m}{(m-n)!n!},H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}$$

?

I also have got a few by-products
$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=-I_{1}-2I_{2}$$

where $$I_{1}=\int_{0}^{1}\dfrac{\ln{(1-x^2)}}{1+x^2}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=\dfrac{\pi}{4}\ln^2{2}+\dfrac{\pi^3}{32}-2K\times\ln{2}$$

and
$$I_{2}=\int_{0}^{1}\dfrac{x\arctan{x}}{1+x^2}\ln{(1-x^2)}dx=-\dfrac{\pi^3}{48}-\dfrac{\pi}{8}\ln^2{2}+K\times\ln{2}$$

and same methods,I have follow integral
$$\int_{0}^{1}\dfrac{\ln{(1-x^4)}\ln{x}}{1+x^2}dx=\dfrac{\pi^3}{16}-3K\times\ln{2}$$
where $ K $ denotes Catalan's Constant.


Here is a solution that only uses complex analysis:

Let $\epsilon$ > 0 and consider the truncated integral

$$ I_{\epsilon} = \int_{-1+\epsilon}^{1} \frac{\arctan x}{x+1} \log\left( \frac{1+x^2}{2} \right) \, dx. $$

By using the formula

$$ \arctan x = \frac{1}{2i} \log \left( \frac{1 + ix}{1 - ix} \right) = \frac{1}{2i} \left\{ \log \left( \frac{1+ix}{\sqrt{2}} \right) - \log \left( \frac{1-ix}{\sqrt{2}} \right) \right\}, $$

it follows that

$$ I_{\epsilon} = \Im \int_{-1+\epsilon}^{1} \frac{1}{x+1} \log^{2} \left( \frac{1+ix}{\sqrt{2}} \right) \, dx. $$

Now let $\omega = e^{i\pi/4}$ and make the change of variable $z = \frac{1+ix}{\sqrt{2}}$ to obtain

$$ I_{\epsilon} = \Im \int_{L_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz, $$

where $L_{\epsilon}$ is the line segment joining from $\bar{\omega}_{\epsilon} := \bar{\omega} + \frac{i\epsilon}{\sqrt{2}}$ to $\omega$. Now we tweak this contour of integration according to the following picture:

![enter image description here][1]

That is, we first draw a clockwise circular arc $\gamma_{\epsilon}$ centered at $\bar{\omega}$ joining from $\bar{\omega}_{\epsilon}$ to some points on the unit circle, and draw a counter-clockwise circular arc $\Gamma_{\epsilon}$ joining from the endpoint of $\gamma_{\epsilon}$ to $\omega$. Then

$$ I_{\epsilon} = \Im \int_{\gamma_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz + \Im \int_{\Gamma_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz =: J_{\epsilon} + K_{\epsilon}. $$

It is easy to check that as $\epsilon \to 0^{+}$, the central angle of $\gamma_{\epsilon}$ converges to $\pi / 4$. Since $\gamma_{\epsilon}$ winds $\bar{\omega}$ clockwise, we have

$$ \lim_{\epsilon \to 0^{+}} J_{\epsilon} = \Im \left( -\frac{i \pi}{4} \mathrm{Res}_{z=\bar{\omega}} \frac{\log^2 z}{z - \bar{\omega}} \right) = \frac{3}{2} \frac{\pi^3}{96}. $$

Also, by applying the change of variable $z = e^{i\theta}$,

$$ K_{\epsilon} = -\Re \int_{-\frac{\pi}{4}+o(1)}^{\frac{\pi}{4}} \frac{\theta^2}{1 - \bar{\omega}e^{-i\theta}} \, d\theta = \int_{-\frac{\pi}{4}+o(1)}^{\frac{\pi}{4}} \frac{\theta^2}{2} \, d\theta. $$

Thus taking $\epsilon \to 0^{+}$, we have

$$ \lim_{\epsilon \to 0^{+}} K_{\epsilon} = - \int_{0}^{\frac{\pi}{4}} \theta^2 \, d\theta = - \frac{1}{2} \frac{\pi^3}{96}. $$

Combining these results, we have

$$ \int_{-1}^{1} \frac{\arctan x}{x+1} \log \left( \frac{x^2 + 1}{2} \right) \, dx = \frac{\pi^3}{96}. $$


The same technique shows that

$$ \int_{-1}^{1} \frac{\arctan (t x)}{x+1} \log \left( \frac{1 + x^2 t^2}{1 + t^2} \right) \, dx = \frac{2}{3} \arctan^{3} t, \quad t \in \Bbb{R} .$$

[1]: http://i.stack.imgur.com/Omsqm.png


?

https://math.stackexchange.com/q/175843/165013

I'm very curious about the ways I may compute the following integral. I'd be very glad to know your approaching ways for this integral:

$$
I_{n} \equiv
\int_{-\infty}^\infty
{1-\cos\left(x\right)\cos\left(2x\right)\ldots\cos\left(nx\right) \over x^{2}}
\,{\rm d}x
$$

According to W|A, $I_1=\pi$, $I_2=2\pi$, $I_3=3\pi$, and one may be tempted to think that it's about an arithmetical progression here, but things change (unfortunately) from $I_4$ that is $\frac{9 \pi}{2}$. This problem
came to my mind when I was working on a different problem.


First note that
$$\int_{-\infty}^{\infty} \frac{1-\cos ax}{x^2} \; dx
= \left[ -\frac{1-\cos ax}{x}\right]_{-\infty}^{\infty} + a \int_{-\infty}^{\infty} \frac{\sin ax}{x} \; dx
= \pi \, |a|,$$
by the [Dirichlet integral](http://en.wikipedia.org/wiki/Dirichlet_integral). Also, by mathematical induction we can easily prove that
$$ \prod_{k=1}^{n} \cos \theta_k = \frac{1}{2^n} \sum_{\mathrm{e}\in S} \cos\left( e_1 \theta_1 + \cdots + e_n \theta_n \right),$$
where the summation runs over the set $S = \{ -1, 1\}^n$. Thus we have
$$ \begin{align*}
I_n = \int_{-\infty}^{\infty} \frac{1-\cos x \cdots \cos nx}{x^2} \; dx
&= \frac{1}{2^n} \sum_{\mathrm{e}\in S} \int_{-\infty}^{\infty} \frac{1-\cos(e_1 x + \cdots + e_n nx)}{x^2} \; dx \\
&= \frac{\pi}{2^n} \sum_{\mathrm{e}\in S} \left|e_1 + \cdots + e_n n\right|.
\end{align*}$$
For example, if $n = 3$, we have $\left|\pm 1 \pm 2 \pm 3\right| = 0, 0, 2, 2, 4, 4, 6, 6$ and hence
$$I_3 = \frac{\pi}{8}(0 + 0 + 2 + 2 + 4 + 4 + 6 + 6) = 3\pi.$$
Let the summation part as
$$ A_n = \sum_{\mathrm{e}\in S} |e_1 + \cdots + e_n n|.$$
The first 10 terms of $(A_n)$ are given by
$$ \left(A_n\right) = (2, 8, 24, 72, 196, 500, 1232, 2968, 7016, 16280, \cdots ), $$
and thus the corresponding $(I_n)$ are given by
$$ \left(I_n\right) = \left( \pi ,2 \pi ,3 \pi ,\frac{9 \pi }{2},\frac{49 \pi }{8},\frac{125 \pi }{16},\frac{77 \pi }{8},\frac{371 \pi }{32},\frac{877 \pi
}{64},\frac{2035 \pi }{128} \right).$$
So far, I was unable to find a simple formula for $(A_n)$, and I guess that it is not easy to find such one.

----------

p.s. The probability distribution of $S_n = e_1 + \cdots + e_n n$ is bell-shaped, and fits quite well with the corresponding normal distribution $X_n \sim N(0, \mathbb{V}(S_n))$. Thus it is not bad to conjecture that
$$ \frac{A_n}{2^n} = \mathbb{E}|S_n| \approx \mathbb{E}|X_n| = \sqrt{\frac{n(n+1)(2n+1)}{3\pi}},$$
and hence
$$ I_n \approx \sqrt{\frac{\pi \, n(n+1)(2n+1)}{3}}.$$
Indeed, numerical experiment shows that

![Numerical Experiment][1]

----------

I was able to prove a much weaker statement:
$$ \lim_{n\to\infty} \frac{I_n}{n^{3/2}} = \sqrt{\frac{2\pi}{3}}. $$
First, we observe that for $|x| \leq 1$ we have
$$ \log \cos x = -\frac{x^2}{2} + O\left(x^4\right).$$
Thus in particular,
$$
\sum_{k=1}^{n} \log\cos\left(\frac{kx}{n}\right)
= \sum_{k=1}^{n}\left[-\frac{k^2 x^2}{2n^2} + O\left(\frac{k^4x^4}{n^4}\right)\right]
= -\frac{nx^2}{6} + O\left(x^2 \vee nx^4\right).$$
Now let
$$ \begin{align*}\frac{1}{n^{3/2}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n}\cos (kx)}{x^2} \; dx
&= \frac{1}{\sqrt{n}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n}\cos \left(\frac{kx}{n}\right)}{x^2} \; dx \qquad (nx \mapsto x) \\
&= \frac{1}{\sqrt{n}} \int_{|x|\leq 1} + \frac{1}{\sqrt{n}} \int_{|x| > 1}
=: J_n + K_n.
\end{align*}$$
For $K_n$, we have
$$ \left|K_n\right| \leq \frac{1}{\sqrt{n}} \int_{1}^{\infty} \frac{2}{x^2}\;dx = O\left(\frac{1}{\sqrt{n}}\right).$$
For $J_n$, the substitution $\sqrt{n} x \mapsto y$ gives
$$ \begin{align*}
J_n
&= \frac{1}{\sqrt{n}} \int_{|x|\leq 1} \left( 1 - \exp\left( -\frac{nx^2}{6} + O\left(x^2 \vee nx^4\right) \right) \right) \; \frac{dx}{x^2} \\
&= \int_{|y|\leq\sqrt{n}} \left( 1 - \exp\left( -\frac{y^2}{6} + O\left(\frac{y^2}{n}\right) \right) \right) \; \frac{dy}{y^2} \\
&\xrightarrow[]{n\to\infty} \int_{-\infty}^{\infty} \frac{1 - e^{-y^2/6}}{y^2} \; dy \\
&= \left[-\frac{1-e^{-y^2/6}}{y}\right]_{-\infty}^{\infty} + \frac{1}{3} \int_{-\infty}^{\infty} e^{-y^2/6} \; dy
= \sqrt{\frac{2\pi}{3}}.
\end{align*}$$
This completes the proof.

[1]: http://i.stack.imgur.com/P28na.png


I thought it would be worth mentioning that $$\int_{-\infty}^{\infty} \frac{1-\prod_{k=1}^{n}\cos (a_{k}x)}{x^{2}} = \pi a_{n} \tag{1}$$ if the $a_{k}$'s are positive parameters and $a_{n} \ge \sum_{k=1}^{n-1} a_{k}. $

This integral is somewhat similar to the [Borwein integral][1].

We can show $(1)$ by integrating the function $$f(z) = \frac{1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)}{z^{2}}$$ around an indented contour that consists of the real axis and the semicircle above it.

If $a_{n} \ge \sum_{k=1}^{n-1} a_{k}$, then $$1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z) = 1- e^{ia_{n}x}\prod_{k=1}^{n-1}\frac{e^{ia_{k}z}-e^{-ia_{k}z}}{2} $$ is bounded in the upper half-plane. (If you expand, all of the exponentials are of the form $e^{ibz}$, where $b\ge 0$.)

So integrating around the contour, we get $$\operatorname{PV} \int_{-\infty}^{\infty} f(x) \, dx - i \pi \operatorname{Res} [f(z), 0] = 0, $$ where $$ \begin{align}\operatorname{Res}[f(z),0] &= \lim_{z \to 0} \frac{1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)}{z} \\ &= \lim_{z \to 0} \left(-ia_{n}e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)+e^{ia_{n}z} \sum_{k=1}^{n-1} a_{k} \sin(a_{k}z) \prod_{\underset{j \ne k}{j =1}}^{n-1} \cos(a_{j}z)\right) \\ &= -i a_{n}. \end{align}$$

The result follows by equating the real parts on both sides of the equation.


[1]: https://en.wikipedia.org/wiki/Borwein_integral


https://math.stackexchange.com/questions/1705839/prove-int-0-infty-left-prod-k-1n-frac-sin-leftt-kx-rightt-k


$I_n(x)$ is defined as the following.

$$ I_n(x) := \int_0^{\infty } \left(\prod _{k=1}^n \frac{\sin \left(\displaystyle\frac{t}{ k^x}\right)}{\displaystyle\frac{t}{k^x}}\right) \, \mathbbze8trgl8bvbqt$$

We know

$$ I_1(1) = I_2(1) = I_3(1) = \frac{\pi}{2},$$
$$ I_4(1) = \frac{1727 \pi}{3456}, I_5(1) = \frac{20652479 \pi}{41472000},$$
$$ I_6(1) = \frac{2059268143 \pi}{4147200000}, I_7(1) = \frac{24860948333867803 \pi}{50185433088000000}, \cdots .$$

Now, prove

$$ I_n(x) = \frac{\pi}{2}$$

for $x \ge 2$.


Let's define $$\textrm{sinc}\left(x\right)=\begin{cases}
\frac{\sin\left(x\right)}{x}, & x\neq0\\
1, & x=0
\end{cases}
$$ we have the following :

>**Theorem:** Suppose that $\left\{ a_{n}\right\}
$ is a sequence of positive numbers. Let $s_{n}=\sum_{k=1}^{n}a_{k}
$ and $$\tau_{n}=\int_{0}^{\infty}\prod_{k=0}^{n}\textrm{sinc}\left(a_{k}t\right)dt
$$ then $$0<\tau_{n}\leq\frac{\pi}{a_{0}n}
$$ and the equality holds if $n=0
$ or $a_{0}\geq s_{n}
$ when $n\geq1$.

(See [here][1] for the proof) So if we define $$a_{k}=\frac{1}{\left(k+1\right)^{x}}$$ with $x\geq2$ we note that $$a_{0}=1\geq\sum_{k=1}^{\infty}\frac{1}{\left(k+1\right)^{x}}=\zeta\left(x\right)-1$$ and so we have $$I_{n}(x)=\int_{0}^{\infty}\prod_{k=1}^{n}\frac{\sin\left(t/k{}^{x}\right)}{t/k^{x}}dt=\int_{0}^{\infty}\prod_{k=0}^{n}\frac{\sin\left(t/\left(k+1\right)^{x}\right)}{t/\left(k+1\right)^{x}}dt=\frac{\pi}{2}.
$$ **Note:** I think your product must start from $1$ since $$\frac{\sin\left(a/x\right)}{a/x}\overset{x\rightarrow0}{\rightarrow}0
$$ and so all product becomes $0$.
[1]:http://www.thebigquestions.com/borweinintegrals.pdf


?

https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11?rq=1

How can we prove the following trigonometric identity?

$$\displaystyle \tan(3\pi/11) + 4\sin(2\pi/11) =\sqrt{11}$$


?

This is a famous problem!

A proof, which I got from just googling, appears as a solution Problem 218 in the College Mathematics Journal.

Snapshot:

![alt text][1]


[1]: http://i.stack.imgur.com/PYq30.png

You should be able to find a couple of different proofs more and references here: http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.3755v1.pdf

?


Another way to solve it using the following theorem found [here][1] (author B.Sury):

> Let $p$ be an odd prime, $p\equiv -1 \pmod 4$ and let $Q$ be the set of squares in $\mathbb{Z}_p^*$. Then, $$\sum_{a\in Q}\sin\left(\frac{2a\pi}{p}\right)=\frac{\sqrt{p}}{2}$$

[1]: http://www.isibang.ac.in/~sury/luckyoct10.pdf

You may also need to use $2\sin(x)\cos(y)=\sin(x+y)+\sin(x-y)$.


Since $\tan\frac{3\pi}{11}+4\sin\frac{2\pi}{11}>0$, it's enough to prove that
$$\left(\sin\frac{3\pi}{11}+4\sin\frac{2\pi}{11}\cos\frac{3\pi}{11}\right)^2=11\cos^2\frac{3\pi}{11}$$ or
$$\left(\sin\frac{3\pi}{11}+2\sin\frac{5\pi}{11}-2\sin\frac{\pi}{11}\right)^2=11\cos^2\frac{3\pi}{11}$$ or
$$1-\cos\frac{6\pi}{11}+4-4\cos\frac{10\pi}{11}+4-4\cos\frac{2\pi}{11}+4\cos\frac{2\pi}{11}-4\cos\frac{8\pi}{11}-$$
$$-4\cos\frac{2\pi}{11}+4\cos\frac{4\pi}{11}-8\cos\frac{4\pi}{11}+8\cos\frac{6\pi}{11}=11+11\cos\frac{6\pi}{11}$$ or
$$\sum_{k=1}^5\cos\frac{2k\pi}{11}=-\frac{1}{2}$$ or
$$\sum_{k=1}^52\sin\frac{\pi}{11}\cos\frac{2k\pi}{11}=-\sin\frac{\pi}{11}$$ or
$$\sum_{k=1}^5\left(\sin\frac{(2k+1)\pi}{11}-\sin\frac{(2k-1)\pi}{11}\right)=-\sin\frac{\pi}{11}$$ or
$$\sin\frac{11\pi}{11}-\sin\frac{\pi}{11}=-\sin\frac{\pi}{11}.$$
Done!

?


Similar to the proof from the College Mathematics Journal, but structured slightly differently.

Let $\omega=e^{i\pi /11}$. Then we get $\sin\dfrac{k\pi}{11}=\dfrac{\omega^{2k}-1}{2i\omega^k}$ and $\tan\dfrac{k\pi}{11}=\dfrac{\omega^{2k}-1}{i(\omega^{2k}+1)}$

Substitution followed by some algebraic manipulations should lead to $\displaystyle\sum_{i=0}^{10}\omega^{2i}=0$, which is certainly true.


A slightly more general one is
$$ (\tan 3x+4\sin 2x)^{2}= 11-\frac{\cos 8x(\tan 8x+\tan 3x)}{\sin x\cos 3x}.$$ The proof is similar, see e.g. on Mathlinks [here][1] or the attached file [on the bottom of this post][2].


[1]: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=494824#p494824
[2]: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=90737#p90737


https://math.stackexchange.com/questions/578286/how-prove-this-tan-frac2-pi134-sin-frac6-pi13-sqrt132-sqrt13

**Nice Question:**

show that: The follow nice trigonometry
>$$\tan{\dfrac{2\pi}{13}}+4\sin{\dfrac{6\pi}{13}}=\sqrt{13+2\sqrt{13}}$$

This problem I have ugly solution, maybe someone have nice methods? Thank you

My ugly solution:
>let $$A=\tan{\dfrac{2\pi}{13}}+4\sin{\dfrac{6\pi}{13}},B=\tan{\dfrac{4\pi}{13}}+4\sin{\dfrac{\pi}{13}}$$
since
$$\tan{w}=2[\sin{(2w)}-\sin{(4w)}+\sin{(6w)}-\sin{(8w)}+\cdots\pm \sin{(n-1)w}]$$
where $n$ is odd,and $w=\dfrac{2k\pi}{n}$

so
>$$\tan{\dfrac{2\pi}{13}}=2\left(\sin{\dfrac{4\pi}{13}}-\sin{\dfrac{5\pi}{13}}+\sin{\dfrac{\pi}{13}}+\sin{\dfrac{3\pi}{13}}-\sin{\dfrac{6\pi}{13}}+\sin{\dfrac{2\pi}{13}}\right)$$
$$\tan{\dfrac{4\pi}{13}}=2\left(\sin{\dfrac{5\pi}{13}}-\sin{\dfrac{3\pi}{13}}-\sin{\dfrac{2\pi}{13}}-\sin{\dfrac{6\pi}{13}}-\sin{\dfrac{\pi}{13}}+\sin{\dfrac{4\pi}{13}}\right)$$
then
$$A^2-B^2=(A+B)(A-B)=16\left(\sin{\dfrac{\pi}{13}}+\sin{\dfrac{3\pi}{13}}+\sin{\dfrac{4\pi}{13}}\right)\left(\sin{\dfrac{2\pi}{13}}-\sin{\dfrac{5\pi}{13}}+\sin{\dfrac{6\pi}{13}}\right)=\cdots=4\sqrt{13}$$
$$AB=\cdots=6\left(\cos{\dfrac{\pi}{13}}+\cos{\dfrac{2\pi}{13}}+\cos{\dfrac{3\pi}{13}}-\cos{\dfrac{4\pi}{13}}-\cos{\dfrac{5\pi}{13}}+\cos{\dfrac{6\pi}{13}}\right)=\cdots=3\sqrt{3}$$
so
$$A=\sqrt{13+2\sqrt{13}},B=\sqrt{13-2\sqrt{13}}$$

Have other nice metods?

and I know this is simlar 1982 AMM problem: https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11

But My problem is hard then AMM problem。Thank you very much!


Here's an approach using some number theory. I'm no cleaner than yours, but it does apply standard techniques that might be good to know (and pretty much always work, even when there's no short solution).

Let $\zeta = \exp\bigl(\frac{2\pi i}{13}\bigr)$. Then $\zeta$ solves the 12th-order equation $p(\zeta) = \zeta^{12} + \zeta^{11} + \dots + \zeta + 1 = 0$, and no polynomial with rational coefficients of lower degree. Note that $\tan \frac{2\pi}{13} = -i\frac{\zeta - \zeta^{-1}}{\zeta + \zeta^{-1}}$, and $\sin \frac{6\pi}{13} = -i \frac{\zeta^3 - \zeta^{-3}}{2}$. Thus the problem is equivalent to showing that

$$ \xi = \frac{\zeta - \zeta^{-1}}{\zeta + \zeta^{-1}} + 2 (\zeta^3 - \zeta^{-3}) $$

solves the equation $ \xi^2 = -13 - 2\sqrt{13} $.
Note that this is almost equivalent to the equation
$$(\xi^2 + 13)^2 = 52$$
The difference is the choice of $\pm \sqrt{13}$ above, which can in principal be fixed with some estimations.

This latter equation must follow purely from the algebraic equation $p(\zeta) = 0$; in particular, it must hold for all other roots of $p$. This suggests that the ideas of Galois theory could help.

So, let's take some time to document the Galois theory of the algebraic integer $\zeta$, and of the field $\mathbb Q[\zeta]$. We begin by calculating its Galois group. The roots of $p$ are $\zeta,\zeta^2,\dots,\zeta^{12}$; and so the Galois group $G = \mathrm{Aut}(\mathbb Q[\zeta])$ has order $12$. Each element $f\in G$ is of the form $f_m : \zeta \mapsto \zeta^m$; noting that $f_m f_n (\zeta) = f_m( \zeta^n) = (\zeta^m)^n = \zeta^{mn}$, we see that the Galois group is abelian. Noting that $3^3 \equiv 1 \pmod {13}$, we see that $f_3$ is an automorphism of order $3$. Finally, $2^4 \equiv 3 \pmod{13}$, so $(f_2)^4 = f_3$, from which it follows that $f_2$ is an element in $G$ of order $12$. In particular, $G \cong \mathbb Z/(12)$ is cyclic, generated by (for example) $f_2$.

This means the following. An element of $\mathbb Q[\zeta]$ — i.e. a polynomial in $\zeta$ — is rational iff it it invariant under $f_2$. Every element of $\mathbb Q[\zeta]$ solves a 12th-order polynomial. Since $f_3$ and its inverse $(f_3)^{-1} = (f_3)^2 = f_9$ are the only elements of $G$ of order $3$, an element of $\mathbb Q[\zeta]$ solves a 4th-order polynomial iff it is invariant under $f_3$. Note that $f_4$ generates the subgroup of order $6$, which has index $2$ in $\mathbb Z / 6$; therefore an element solves a quadratic equation iff it is invariant under $f_4$. And so on: the subgroup of order $2$ is generated by $f_{12} : \zeta \mapsto \zeta^{12} = \zeta^{-1}$, and so elements invariant under $f_{12}$, like $\zeta + \zeta^{-1}$, solve 6th-degree polynomials.

Returning to the $\xi$ at hand, let's suppose we don't know what polynomial it's supposed to solve, and try to find it. Before continuing, let's factor a copy of $1 + z^2$ out of $p(z) - 1$, to clear denominators in $\xi$:

$$ p(z) - 1 = (z+z^{-1})(z^2 + z^3 + z^6 + z^7 + z^{10} + z^{11}) $$
$$ \frac1{\zeta + \zeta^{-1}} = -\zeta^2 - \zeta^3 - \zeta^6 - \zeta^{-6} - \zeta^{-3} - \zeta^{-2} $$
$$ \xi = \zeta^1 + \zeta^2 - \zeta^3 - \zeta^4 + \zeta^5 + \zeta^6 - \zeta^{-6} - \zeta^{-5} + \zeta^{-4} + \zeta^{-3} - \zeta^{-2} - \zeta^{-1} + 2(\zeta^3 - \zeta^{-3}) = \zeta^1 + \zeta^2 + \zeta^3 - \zeta^4 + \zeta^5 + \zeta^6 - \zeta^{-6} - \zeta^{-5} + \zeta^{-4} - \zeta^{-3} - \zeta^{-2} - \zeta^{-1}$$

Note that the orbits under $f_3$ are $\{\zeta,\zeta^3,\zeta^4\}$, $\{\zeta^2, \zeta^6,\zeta^{18} = \zeta^5\}$, and two more formed from these by $\zeta \mapsto \zeta^{-1}$. Inspection then shows that $\xi$ is in fact invariant under $f_3$, hence solves a 4th-order equation. The four roots are necessarily given by $\xi, f_2(\xi), f_4(\xi), f_8(\xi)$. Thus the equation is $(z-\xi)(z-f_2\xi)(z - f_4\xi)(z - f_8\xi)$.

Rather than multiplying this out, let's note that $f_4(\xi) = -\xi$, and $f_8(\xi) = -f_2(\xi)$. This is because $\xi$ transforms by a factor of $-1$ under the action of $f_{12} = (f_4)^3$. (Put another way, $\xi$ is pure imaginary.) Thus we're looking for the polynomial

$$ q(z) = \bigl(z^2 - \xi^2\bigr)\bigr(z^2 - f_2(\xi)^2\bigr) $$

since it will the minimal polynomial with rational coefficients solved by $\xi$.

Let us write $\alpha = \zeta + \zeta^3 + \zeta^9$, so that $\xi = \alpha + f_2(\alpha) - f_4(\alpha) - f_8(\alpha)$, and $f_2(\xi) = - \alpha + f_2(\alpha) + f_4(\alpha) - f_8(\alpha)$. Note also that the defining equation is $\alpha + f_2(\alpha) + f_4(\alpha) + f_8(\alpha) + 1 = 0$. We are reduced to calculating two numbers: $b = \xi^2 + f_2(\xi)^2$ and $c = \xi^2f_2(\xi)^2$; then $q(z) = z^4 - bz^2 + c$. We note that

$$ \alpha^2 = f_2(\alpha) + 2\zeta^4 + 2\zeta^{10} + 2\zeta^{12} = f_2(\alpha) + 2f_4(\alpha) $$
$$ \alpha \ f_4(\alpha) = (\zeta + \zeta^3 + \zeta^{-4})(\zeta^4 + \zeta^{-1} + \zeta^{-3}) = 3 + \zeta^5 + \zeta^{-2} + \zeta^{-6} + \zeta^2 + \zeta^{-5} + \zeta^6 = 3 + f_2(\alpha) + f_8(\alpha) $$

Writing $\beta = \alpha - f_4(\alpha)$, we have:
$$ \xi = \beta + f_2(\beta), \quad f_2(\xi) = -\beta + f_2(\beta) $$
$$ b = \xi^2 + f_2(\xi)^2 = 2 (\beta^2 + f_2(\beta)^2) $$
$$ c = \bigl(\xi f_2(\xi)\bigr)^2 = \bigl(\beta^2 - f_2(\beta)^2\bigr)^2 $$

$$ \beta^2 = \alpha^2 + f_4(\alpha)^2 - 2\alpha \ f_4(\alpha) = f_2(\alpha) + 2f_4(\alpha) + f_8(\alpha) + 2 \alpha - 2(3 + f_2(\alpha) + f_8(\alpha)) = -6 + 2\alpha - f_2(\alpha) + 2f_4(\alpha) - f_8(\alpha)$$
$$ \beta^2 + f_2(\beta)^2 = -12 + (\alpha + f_2\alpha + f_4\alpha + f_8\alpha) = -13 $$
$$ \beta^2 - f_2(\beta)^2 = 3\alpha - 3f_2(\alpha) + 3f_4(\alpha) - 3f_8(\alpha) = 3(\alpha + f_4(\alpha) - f_2(\alpha) - f_8(\alpha)) $$

Therefore $b = -26$. Let $\gamma = \alpha + f_4\alpha$, so that $\gamma + f_2(\gamma) = -1$, and
$$ \gamma \ f_2(\gamma) = (\zeta + \zeta^3 + \zeta^4 + \zeta^{-4} + \zeta^{-3} + \zeta^{-2})(\zeta^2 + \zeta^5 + \zeta^6 + \zeta^{-6} + \zeta^{-5} + \zeta^{-2}) =
\zeta + \zeta^2 + \zeta^3 + \zeta^5 + 2\zeta^6 + \zeta^{-6} + 2\zeta^{-5} + 3\zeta^{-4}
+ 2\zeta^{-3} + 2\zeta^{-2} + 2\zeta^{-1} + (\zeta \leftrightarrow \zeta^{-1}) = 3(\zeta + \dots + \zeta^{-1}) = -3$$

The last thing to calculate is:
$$ c = 9(\gamma - f_2(\gamma))^2 = 9\bigl((\gamma + f_2\gamma)^2 - 4\gamma \ f_2\gamma\bigr) = 9\bigl( 1 - 4(-3)\bigr) = 9\times 13$$

Thus $q(z) = z^4 + 26 z^2 + 9\times 13 = (z^2 + 13)^2 - 4\times 13$, completing the proof.


The following argument is more or less a duplicate in this [paper](https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11?rq=1):

Let $x=e^{2\pi i/13}$. Then $$i\tan{2\pi/13}=\frac{x^2-1}{x^2+1}=\frac{x^2-x^{26}}{x^2+1}$$

(recall that $x^{13}=1$)

$$=x^2(1-x^2)(1+x^4+x^8+x^{12}+x^3+x^7)$$
$$=(x+x^2+x^5+x^6+x^9+x^{10}-x^3-x^4-x^7-x^8-x^{11}-x^{12})$$

$$4i\sin{6\pi/13}=2(x^3-x^{10})$$

So $i\tan{2\pi/13}+4i\sin{6\pi/13}=(x+x^2+x^3+x^5+x^6+x^9-x^4-x^7-x^8-x^{10}-x^{11}-x^{12})$

Recall that $1+x+x^2+\cdots+x^{12}=0$.

After some tedious computation, we arrive at

$$(x+x^2+x^3+x^5+x^6+x^9)(x^4+x^7+x^8+x^{10}+x^{11}+x^{12})$$

$$=4+x+x^3+x^4+x^9+x^{10}+x^{12}$$

The key step in the deduction is the [famous exponential sum of Gauss](http://en.wikipedia.org/wiki/Quadratic_Gauss_sum), which gives,

$$1+2(x+x^4+x^9+x^3+x^{12}+x^{10})=\sqrt{13}.$$

Hence $$(x+x^2+x^3+x^5+x^6+x^9)(x^4+x^7+x^8+x^{10}+x^{11}+x^{12})=(7+\sqrt{13})/2$$

Recall our formula $1+x+x^2+\cdots+x^{12}=0$ again, and

$$(x+x^2+x^3+x^5+x^6+x^9-x^4-x^7-x^8-x^{10}-x^{11}-x^{12})^2=(-1)^2-4\times(7+\sqrt{13})/2$$
$$=-13-2\sqrt{13}$$

Hence $i\tan{2\pi/13}+4i\sin{6\pi/13}=\pm i\sqrt{13+2\sqrt{13}}$

and it is obvious that $\tan{2\pi/13}+4\sin{6\pi/13}=\sqrt{13+2\sqrt{13}}$, Q.E.D.

**P.S.** I have a strong feeling that a generalization of such an identity to all primes is possible, but I cannot work them out right now.


?

?https://math.stackexchange.com/questions/411571/how-prove-this-left-frac-sin-sqrt-lambda-cdot-tau-sqrt-lambda-righ

let $\lambda $ is a any complex numbers,and $\tau\in[0,1]$

show that
$$\left|\dfrac{\sin{(\sqrt{\lambda}\cdot\tau)}}{\sqrt{\lambda}}\right|\le e^{|\mathrm{Im}\sqrt{\lambda}|\cdot\tau}$$

my idea:
$$\left|\dfrac{\sin{(\sqrt{\lambda}\cdot\tau)}}{\sqrt{\lambda}}\right|\le \int_{0}^{\tau}|\cos{(\sqrt{\lambda}\cdot s)}|ds$$

follow I can't solve it,Thank you


?

https://math.stackexchange.com/questions/523297/how-to-prove-this-inequality-bigx-sin-frac1x-y-sin-frac1y-big2

For any real numbers $x,y\neq 0$,show that
$$\Big|x\sin{\dfrac{1}{x}}-y\sin{\dfrac{1}{y}}\Big|<2\sqrt{|x-y|}$$
I found this problem when I dealt with [this problem][1]. But I can't prove it. Maybe the constant $2$ on the right hand side can be replaced by the better constant $\sqrt{2}$?

Thank you.


[1]: https://math.stackexchange.com/questions/522163/how-prove-this-analysis-function-a-le-frac12


We'll first assume that $0 \le x < y$.

I need three kinds of estimates here.

1. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le x + y$
2. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le 2$
3. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le \frac{y}{x} - 1$

Estimates 1 and 2 are trivial: $\left| x \sin \frac{1}{x} \right| \le \min(x, 1)$

Estimate 3 is proved as follows.

- First we show that $\left| (x \sin \frac{1}{x})^\prime \right| \le \frac{1}{x}$. Indeed, $(x \sin \frac{1}{x})^{\prime\prime} = - \frac{1}{x^3} \sin \frac{1}{x}$, so local maxima and minima of $(x \sin \frac{1}{x})^\prime$ are located at $\frac{1}{\pi n}, n \in \mathbb{N}$, and its values there are $\frac{(-1)^n}{\pi n}$, so that $\sup_{z \ge x} \left| (z \sin \frac{1}{z})^\prime \right| \le \frac{1}{\pi n} \le \frac{1}{x}$, where $\frac{1}{\pi n}$ is the smallest one in $[x,+\infty)$.
- Now $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le \intop_x^y \frac{1}{z} dz = \log \frac{y}{x} \le \frac{y}{x} - 1$

Now let's find the three regions corresponding to:

1. $x + y \le C \sqrt{y - x}$
2. $2 \le C \sqrt{y - x}$
3. $\frac{y}{x} - 1 \le C \sqrt{y - x}$

and choose the constant $C$ in such a way that these regions cover $\{0 < x < y\}$. Clearly, 2 is bounded by a line, 1 and 3 are bounded by parabolas. Miraculously, $C = 2$ is the unique value when the three boundaries intersect at a single point, namely $(x,y) = (1/2, 3/2)$...

Anyway, let's rewrite our regions for $C = 2$:

1. $y-x \ge \frac{1}{4} (x+y)^2$
2. $y-x \ge 1$
3. $y-x \le 4 x^2$

So to cover the whole space we have to prove $y-x \ge \frac{1}{4} (x+y)^2$ on $\{4 x^2 \le y-x \le 1\}$, for which it is sufficient to consider just the two boundary cases, namely $y-x = 1$ and $y-x = 4 x^2$, since a quadratic polynomial with positive leading term attains maximum on the boundary of a segment. And these cases are easy to verify. Indeed, the inequality in terms of $x$ and $z := y-x$ looks like $x^2 + xz + \frac{1}{4} z^2 \le z$; for $z=1$ it's equivalent to $(x + \frac{1}{2})^2 \le 1$, which is true, since $4 x^2 \le 1$; for $z = 4 x^2$ it's equivalent to $3 x^2 \ge 4 x^3 + 4 x^4$, which follows once again from $4 x^2 \le 1$ (since $x^2 \ge 2 x^3$ and $x^2 \ge 4 x^4$).

Now the case $x < 0 < y$ is even simpler. We only need analogs of estimates 1 and 2:

1. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le |x| + |y| \le C \sqrt{|x| + |y|}$ whenever $|x| + |y| \le C^2 = 4$
2. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le 2 \le C \sqrt{|x| + |y|}$ whenever $|x| + |y| \ge (\frac{2}{C})^2 = 1$.


This is a partial alternative solution for the case $\left|\frac{1}{x}-\frac{1}{y}\right|\leq 1$.

We can clearly assume that both $x$ and $y$ are positive, then, through the substitutions $x\to 1/x,y\to 1/y$, prove that:
$$ \forall x,y>0,x\neq y,\quad (y\sin x-x\sin y)^2 < 4xy|y-x|. $$
The LHS can be written as:
$$ \left((y-x)\sin x + x\,(\sin x-\sin y)\right)^2, $$
that, by the Cauchy-Schwarz inequality, satisfies:
$$ \left((y-x)\sin x + x\,(\sin x-\sin y)\right)^2 \leq (x^2+\sin^2 x)\left((y-x)^2+(\sin y-\sin x)^2\right), $$
and the RHS is less than $4x^2(y-x)^2$, since $\sin x$ is a $1$-Lipschitz function.

By exchanging $x$ and $y$, we have:
$$ (y\sin x-x\sin y)^2 < \min\left(4x^2(y-x)^2,4y^2(y-x)^2\right)<4xy(y-x)^2,$$
so the inequality is clearly true if $|y-x|\leq 1$.


?

?

https://math.stackexchange.com/q/501984/165013

show that
>$$\mathop {\lim }\limits_{n \to \infty } \left( {\int\limits_0^{\frac{\pi }{2}} {\left\vert\frac{{\sin \left( {2n + 1} \right)x}}{{\sin x}}\right\vert\,dx - \frac{{2\ln n}}{\pi }} } \right) = \frac{{6\ln 2}}{\pi } + \frac{{2\gamma }}{\pi } + \frac{2}{\pi }\sum\limits_{k = 1}^\infty {\frac{1}{{2k + 1}}\ln \left( {1 + \frac{1}{k}} \right)}\cdots (1) $$

I can prove $(1)$ it exsit it.and also it is well kown that
$$I_{n}=\int_{0}^{\frac{\pi}{2}}\dfrac{\sin{(2n+1)x}}{\sin{x}}dx=\dfrac{\pi}{2}$$

>proof:$$I_{n}-I_{n-1}=\int_{0}^{\frac{\pi}{2}}\dfrac{\sin{(2n+1)x}-\sin{(2n-1)x}}{\sin{x}}dx=2\int_{0}^{\frac{\pi}{2}}\cos{(2nx)}dx=0$$
so
$$I_{n}=I_{n-1}=\cdots=I_{0}=\dfrac{\pi}{2}$$
But I can't prove $(1)$,Thank you


?

Notice for any continuous function $f(x)$ on $[0,\frac{\pi}{2}]$, we have:

$$\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \Big|\sin((2n+1)x)\Big| f(x) dx = \frac{2}{\pi}\int_0^{\frac{\pi}{2}} f(x) dx$$

Apply this to $\frac{1}{\sin x} - \frac{1}{x}$, we get

$$\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \Big|\sin((2n+1)x)\Big| \Big(\frac{1}{\sin x} - \frac{1}{x} \Big) dx
= \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \Big(\frac{1}{\sin x} - \frac{1}{x} \Big) dx\\
= \frac{2}{\pi} \left[\log\left(\frac{\tan(\frac{x}{2})}{x}\right)\right]_0^{\frac{\pi}{2}}
= \frac{2}{\pi} \left[\log\frac{2}{\pi} - \log{\frac12}\right] = \frac{2}{\pi} \log\frac{4}{\pi}
\tag{*1}$$
So it suffices to figure out the asymptotic behavior of following integral:

$$\int_0^{\frac{\pi}{2}} \frac{|\sin((2n+1)x)|}{x} dx
= \int_0^{\pi(n+\frac12)} \frac{|\sin x|}{x} dx = \int_0^{\pi n} \frac{|\sin x|}{x} dx + O(\frac{1}{n})
$$
We can rewrite the rightmost integral as

$$\int_0^{\pi} \sin x \Big( \sum_{k=0}^{n-1} \frac{1}{x+k\pi} \Big) dx
= \int_0^1 \sin(\pi x) \Big( \sum_{k=0}^{n-1} \frac{1}{x+k} \Big) dx\\
= \int_0^1 \sin(\pi x) \Big( \psi(x+n) - \psi(x) \Big) dx
\tag{*2}
$$
where $\displaystyle \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is the
[digamma function](http://en.wikipedia.org/wiki/Digamma_function).

Using following asymptotic expansion of $\psi(x)$ for large $x$:

$$\psi(x) = \log x - \frac{1}{2x} + \sum_{k=1}^{\infty}\frac{\zeta(1-2k)}{x^{2k}}$$
It is easy to verify
$$\int_0^1 \sin(\pi x)\psi(x+n) dx = \frac{2}{\pi} \log n + O(\frac{1}{n})\tag{*3}$$.

Substitute $(*3)$ into $(*2)$ and combine it with $(*1)$, we get

$$\lim_{n\to\infty} \left(\int_0^{\frac{\pi}{2}} \left|\frac{\sin((2n+1)x)}{\sin x}\right| dx - \frac{2}{\pi} \log n\right) = \frac{2}{\pi} \log\frac{4}{\pi} - \int_0^1 \sin(\pi x)\psi(x) dx \tag{*4}$$
To compute the rightmost integral of $(*4)$, we first integrate it by part:

$$\int_0^1 \sin(\pi x)\psi(x) dx = \int_0^1 \sin(\pi x)\,d\log\Gamma(x) =
-\pi\int_0^1 \cos(\pi x)\log\Gamma(x) dx
$$
We then apply following result$\color{blue}{^{[1]}}$
> **Kummer (1847)** Fourier series for $\log\Gamma(x)$ for $x \in (0,1)$
> $$\log\Gamma(x) = \frac12\log\frac{\pi}{\sin(\pi x)} + (\gamma + \log(2\pi))(\frac12 - x) + \frac{1}{\pi}\sum_{k=2}^{\infty}\frac{\log k}{k}\sin(2\pi k x)$$

Notice

1. $\displaystyle \int_0^1 \cos(\pi x)\log \frac{\pi}{\sin(\pi x)} dx = 0\quad$ because of symmtry.

2. $\displaystyle \int_0^1 \cos(\pi x)\Big(\frac12 - x\Big) dx = \frac{2}{\pi^2}$

3. $\displaystyle \int_0^1 \cos(\pi x)\sin(2\pi k x) dx = \frac{4k}{(4k^2-1)\pi} $

We can evaluate RHS of $(*4)$ as
$$\begin{align}
\text{RHS}_{(*4)} = & \frac{2}{\pi}\log\frac{4}{\pi} + \pi \left[
\Big(\gamma + \log(2\pi)\Big)\frac{2}{\pi^2}
+ \frac{4}{\pi^2}\sum_{k=2}^{\infty}\frac{\log k}{4k^2-1}
\right]\\
= & \frac{2}{\pi}\left[\log 8 + \gamma + \sum_{k=2}^{\infty}\log k \left(\frac{1}{2k-1}-\frac{1}{2k+1}\right) \right]\\
= & \frac{6\log 2}{\pi} + \frac{2\gamma}{\pi} + \frac{2}{\pi}\sum_{k=1}\frac{\log(1+\frac{1}{k})}{2k+1}
\end{align}$$

***Notes***

$\color{blue}{[1]}$ For more infos about Kummer's Fourier series, please see
following [paper](http://arxiv.org/abs/0903.4323) by Donal F. Connon.


?

?

AMM Problem 11777, Vol.121, May 2014

令$n\geq 3$, $x_1,\ldots,x_n$為實數使得$\prod_{k=1}^{n}x_k=1$.證明
\[\sum_{k=1}^{\infty}{\frac{x_{k}^{2}}{x_{k}^{2}-2x_k\cos \left( 2\pi /n \right) +1}}\ge 1.\]

注:不等式對于$n=1,2$不成立,例如取$x_1=x_2=1$.

若$z_1,\ldots,z_n$和$w_1,\ldots,w_n$為復數,則由Lagrange恒等式可知
\[\left( \sum_{k=1}^n{\left| z_k \right|^2} \right) \left( \sum_{k=1}^n{\left| w_k \right|^2} \right) -\left| \sum_{k=1}^n{z_kw_k} \right|^2=\sum_{1\le k<j\le n}{\left| z_k\overline{w_j}-z_j\overline{w_k} \right|^2}.\]
令$w_k=c_k\in\mathbb{R}^+$, 令$z_k=c_ky_k$且$y_k\in\mathbb{C}$,由上述不等式可知
\[\left( \sum_{k=1}^n{c_{k}^{2}\left| y_k \right|^2} \right) \left( \sum_{k=1}^n{c_{k}^{2}} \right) \ge \sum_{1\le k<j\le n}{c_{k}^{2}c_{j}^{2}\left| y_k-y_j \right|^2}\ge \sum_{k=1}^n{c_{k}^{2}c_{k+1}^{2}\left| y_k-y_{k+1} \right|^2},\]
第二個不等式對$n\geq 3$成立當且僅當$c_{n+1}=c_1,y_{n+1}=y_1$.

設$y_1,\ldots,y_n$互異,并令$c_k=1/|y_k-y_{k+1}|>0$,我們有
\[\sum_{k=1}^n{\frac{\left| y_k \right|^2}{\left| y_k-y_{k+1} \right|^2}}\ge 1.\]
最后,令$y_{k+1}/y_k=e^{2\pi i/n}/x_k\neq 1$,則
\[\prod_{k=1}^n{\frac{y_{k+1}}{y_k}}=\frac{\left( e^{2\pi i/n} \right) ^n}{\prod_{k=1}^n{x_k}}=1.\]
因此
\begin{align*}
\sum_{k=1}^n{\frac{x_{k}^{2}}{x_{k}^{2}-2x_k\cos \left( 2\pi /n \right) +1}}&=\sum_{k=1}^n{\frac{x_{k}^{2}}{\left| x_k-e^{2\pi i/n} \right|^2}}
\\
&=\sum_{k=1}^n{\frac{1}{\left| 1-y_{k+1}/y_k \right|^2}}=\sum_{k=1}^n{\frac{\left| y_k \right|^2}{\left| y_k-y_{k+1} \right|^2}}\ge 1.
\end{align*}

轉載于:https://www.cnblogs.com/Eufisky/p/9880529.html

總結

以上是生活随笔為你收集整理的美国数学月刊问题18-10-31的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

黑人粗大猛烈进出高潮视频 | 人妻无码αv中文字幕久久琪琪布 | 国产人妻精品一区二区三区不卡 | 国产精品18久久久久久麻辣 | 精品成人av一区二区三区 | 国产精品国产自线拍免费软件 | 国产成人无码av在线影院 | 亚洲精品国产品国语在线观看 | 欧美精品一区二区精品久久 | 精品国产aⅴ无码一区二区 | 2019午夜福利不卡片在线 | 久久久久久亚洲精品a片成人 | 亚洲精品国产品国语在线观看 | yw尤物av无码国产在线观看 | 精品久久久久香蕉网 | 国产免费无码一区二区视频 | 精品aⅴ一区二区三区 | 国产免费久久久久久无码 | 国产精品沙发午睡系列 | 国产午夜精品一区二区三区嫩草 | 欧美人与牲动交xxxx | 东京热男人av天堂 | 熟妇女人妻丰满少妇中文字幕 | 国产乱人伦偷精品视频 | 国产香蕉97碰碰久久人人 | 欧美熟妇另类久久久久久不卡 | 丰满诱人的人妻3 | 无码人妻精品一区二区三区下载 | 日日碰狠狠躁久久躁蜜桃 | 亚洲一区二区三区 | 老熟女乱子伦 | 久久精品中文字幕大胸 | 久久久国产精品无码免费专区 | 国产成人无码av一区二区 | 久久精品国产一区二区三区 | 日本肉体xxxx裸交 | 日韩 欧美 动漫 国产 制服 | 狠狠色色综合网站 | 18禁黄网站男男禁片免费观看 | 无码人中文字幕 | 精品一二三区久久aaa片 | 色婷婷香蕉在线一区二区 | 中文字幕精品av一区二区五区 | 国产成人精品一区二区在线小狼 | 免费人成在线视频无码 | 色狠狠av一区二区三区 | 亚洲第一网站男人都懂 | 欧美性生交xxxxx久久久 | 久久 国产 尿 小便 嘘嘘 | 一本大道久久东京热无码av | 男人的天堂av网站 | 水蜜桃av无码 | 国产熟妇高潮叫床视频播放 | 亚洲一区av无码专区在线观看 | 国内精品人妻无码久久久影院蜜桃 | 东北女人啪啪对白 | 欧美xxxx黑人又粗又长 | 无人区乱码一区二区三区 | 国内精品久久久久久中文字幕 | 在线精品国产一区二区三区 | 久久国产精品_国产精品 | 红桃av一区二区三区在线无码av | 精品国产一区二区三区四区在线看 | 鲁一鲁av2019在线 | 人妻无码αv中文字幕久久琪琪布 | 国产免费久久精品国产传媒 | 最近中文2019字幕第二页 | 精品久久久无码中文字幕 | 高中生自慰www网站 | 内射后入在线观看一区 | 亚洲精品鲁一鲁一区二区三区 | 天堂а√在线中文在线 | 国产特级毛片aaaaaa高潮流水 | 国产精品永久免费视频 | 久久久久久久女国产乱让韩 | 精品偷拍一区二区三区在线看 | 超碰97人人做人人爱少妇 | 天堂在线观看www | 免费人成网站视频在线观看 | 国产精品无码一区二区三区不卡 | 国产成人午夜福利在线播放 | 国产精品久久久久久亚洲毛片 | 免费人成在线观看网站 | 国产午夜精品一区二区三区嫩草 | 免费乱码人妻系列无码专区 | 久久久久久久女国产乱让韩 | 国产无遮挡又黄又爽又色 | 国内精品久久毛片一区二区 | 乌克兰少妇xxxx做受 | 成人免费视频视频在线观看 免费 | 色综合视频一区二区三区 | 亚洲日本va午夜在线电影 | 国产精华av午夜在线观看 | 欧美大屁股xxxxhd黑色 | 日日天干夜夜狠狠爱 | 一本久久伊人热热精品中文字幕 | 国产两女互慰高潮视频在线观看 | 又大又硬又爽免费视频 | 久久综合狠狠综合久久综合88 | 欧洲美熟女乱又伦 | 成年女人永久免费看片 | 少妇性俱乐部纵欲狂欢电影 | 国产在线精品一区二区三区直播 | 亚洲gv猛男gv无码男同 | 精品无码av一区二区三区 | 精品国产一区二区三区四区在线看 | 亚洲精品一区三区三区在线观看 | 成人片黄网站色大片免费观看 | 婷婷五月综合激情中文字幕 | 久久久久亚洲精品中文字幕 | 精品欧洲av无码一区二区三区 | ass日本丰满熟妇pics | 久久www免费人成人片 | 99久久人妻精品免费一区 | 国产va免费精品观看 | 免费无码av一区二区 | 亚洲人成影院在线无码按摩店 | 中文字幕人妻无码一区二区三区 | 7777奇米四色成人眼影 | 少妇久久久久久人妻无码 | 亚洲精品无码人妻无码 | 国内老熟妇对白xxxxhd | 97久久精品无码一区二区 | 国产精品无码永久免费888 | 熟妇人妻激情偷爽文 | 日本又色又爽又黄的a片18禁 | 亚洲精品中文字幕乱码 | 男人的天堂av网站 | 日本xxxx色视频在线观看免费 | 好屌草这里只有精品 | www国产亚洲精品久久网站 | 国产激情无码一区二区 | 欧美精品无码一区二区三区 | 98国产精品综合一区二区三区 | 少妇性荡欲午夜性开放视频剧场 | 亚洲熟妇色xxxxx欧美老妇 | 亚洲va欧美va天堂v国产综合 | 国产精品久久久一区二区三区 | 国产区女主播在线观看 | 撕开奶罩揉吮奶头视频 | 亚洲精品综合一区二区三区在线 | 在线亚洲高清揄拍自拍一品区 | 欧美国产日产一区二区 | 亚洲 a v无 码免 费 成 人 a v | 国产在线无码精品电影网 | √8天堂资源地址中文在线 | 国产精品亚洲专区无码不卡 | 国产成人综合色在线观看网站 | 亚洲欧美色中文字幕在线 | 18精品久久久无码午夜福利 | 蜜桃臀无码内射一区二区三区 | 色婷婷久久一区二区三区麻豆 | 天堂一区人妻无码 | 国产亚洲精品久久久久久 | 水蜜桃av无码 | 国产乱人偷精品人妻a片 | 国内精品久久毛片一区二区 | 欧洲熟妇精品视频 | 精品一区二区三区波多野结衣 | 国产激情无码一区二区app | 日本一卡2卡3卡四卡精品网站 | 久久久久亚洲精品男人的天堂 | 18精品久久久无码午夜福利 | 成人片黄网站色大片免费观看 | 好屌草这里只有精品 | 亚洲熟妇自偷自拍另类 | 日日碰狠狠丁香久燥 | 国产精品亚洲综合色区韩国 | 人人妻人人澡人人爽人人精品浪潮 | 国产高清不卡无码视频 | 青青久在线视频免费观看 | 人人澡人摸人人添 | 红桃av一区二区三区在线无码av | 成 人影片 免费观看 | 亚洲中文字幕久久无码 | 男人和女人高潮免费网站 | 兔费看少妇性l交大片免费 | 亚洲精品久久久久久久久久久 | 两性色午夜免费视频 | 成年女人永久免费看片 | 爽爽影院免费观看 | 午夜性刺激在线视频免费 | 色一情一乱一伦一区二区三欧美 | 精品国产国产综合精品 | 亚洲爆乳精品无码一区二区三区 | 一本一道久久综合久久 | 免费观看又污又黄的网站 | 久久综合久久自在自线精品自 | 人妻互换免费中文字幕 | 久久久精品国产sm最大网站 | 疯狂三人交性欧美 | 在线观看国产一区二区三区 | 久久综合狠狠综合久久综合88 | 中文无码成人免费视频在线观看 | 在线成人www免费观看视频 | 少妇人妻偷人精品无码视频 | 成人亚洲精品久久久久软件 | 高清无码午夜福利视频 | 7777奇米四色成人眼影 | 成人欧美一区二区三区黑人免费 | 99久久亚洲精品无码毛片 | 天天躁日日躁狠狠躁免费麻豆 | 未满小14洗澡无码视频网站 | 国产精品高潮呻吟av久久4虎 | 国产精品第一国产精品 | 少妇人妻大乳在线视频 | 99久久久国产精品无码免费 | 女人高潮内射99精品 | 精品国产一区二区三区av 性色 | 国产亚洲人成a在线v网站 | 精品无码国产自产拍在线观看蜜 | 少妇一晚三次一区二区三区 | 亚洲人成网站免费播放 | 亚洲国产精华液网站w | 亚洲精品国产a久久久久久 | 最新国产乱人伦偷精品免费网站 | 97色伦图片97综合影院 | 亚洲色无码一区二区三区 | 少妇无码一区二区二三区 | 国产色视频一区二区三区 | 丰满岳乱妇在线观看中字无码 | 国产精品无码mv在线观看 | 国产猛烈高潮尖叫视频免费 | 亚洲人亚洲人成电影网站色 | 免费网站看v片在线18禁无码 | 国产精品无码久久av | 在线a亚洲视频播放在线观看 | 精品乱子伦一区二区三区 | 野外少妇愉情中文字幕 | 99精品无人区乱码1区2区3区 | 97久久国产亚洲精品超碰热 | 99久久亚洲精品无码毛片 | 国产成人精品视频ⅴa片软件竹菊 | 国产明星裸体无码xxxx视频 | 成人无码精品一区二区三区 | 中文字幕无码日韩欧毛 | 国产亚av手机在线观看 | 欧美高清在线精品一区 | 狂野欧美性猛xxxx乱大交 | 麻豆国产97在线 | 欧洲 | 国产亚洲人成在线播放 | 大乳丰满人妻中文字幕日本 | 久热国产vs视频在线观看 | 亚洲一区二区三区国产精华液 | 亚洲精品一区二区三区在线观看 | 亚洲一区二区三区无码久久 | 小sao货水好多真紧h无码视频 | 98国产精品综合一区二区三区 | 精品乱子伦一区二区三区 | 欧美怡红院免费全部视频 | 一区二区三区高清视频一 | 国产精品多人p群无码 | 黑人玩弄人妻中文在线 | 无码人妻丰满熟妇区五十路百度 | 黑人巨大精品欧美黑寡妇 | 欧美老人巨大xxxx做受 | 少妇厨房愉情理9仑片视频 | www国产亚洲精品久久网站 | 成人综合网亚洲伊人 | 精品乱子伦一区二区三区 | 欧美日本免费一区二区三区 | 久久精品国产日本波多野结衣 | 国产农村乱对白刺激视频 | 无码人妻丰满熟妇区五十路百度 | ass日本丰满熟妇pics | 又色又爽又黄的美女裸体网站 | 久久久亚洲欧洲日产国码αv | 亚洲男人av香蕉爽爽爽爽 | 日本一区二区三区免费高清 | 狂野欧美性猛xxxx乱大交 | 国产成人精品一区二区在线小狼 | 少妇久久久久久人妻无码 | 午夜性刺激在线视频免费 | 自拍偷自拍亚洲精品被多人伦好爽 | 真人与拘做受免费视频 | 精品人人妻人人澡人人爽人人 | 中文无码成人免费视频在线观看 | 色一情一乱一伦 | 亚洲精品久久久久久久久久久 | 国产精品久久久久久久9999 | 扒开双腿疯狂进出爽爽爽视频 | 人人妻人人澡人人爽欧美精品 | 亚洲国产精品久久久天堂 | 99久久久无码国产精品免费 | 国产婷婷色一区二区三区在线 | 四十如虎的丰满熟妇啪啪 | 狠狠色噜噜狠狠狠狠7777米奇 | 欧美激情内射喷水高潮 | 成人精品视频一区二区三区尤物 | 中文无码成人免费视频在线观看 | 激情内射日本一区二区三区 | 久久精品人妻少妇一区二区三区 | 人妻有码中文字幕在线 | 思思久久99热只有频精品66 | 欧美xxxx黑人又粗又长 | 欧美精品无码一区二区三区 | 亚洲 a v无 码免 费 成 人 a v | v一区无码内射国产 | 亚洲国产成人av在线观看 | 亚洲欧洲中文日韩av乱码 | 亚洲色在线无码国产精品不卡 | 久久人人爽人人爽人人片av高清 | 99久久人妻精品免费一区 | 精品久久久无码人妻字幂 | 久久久久亚洲精品中文字幕 | 国产一区二区三区日韩精品 | 人妻人人添人妻人人爱 | 亚洲精品国产品国语在线观看 | 亚洲成色www久久网站 | 久久精品人妻少妇一区二区三区 | 国产av人人夜夜澡人人爽麻豆 | 亚欧洲精品在线视频免费观看 | 国产人妻人伦精品1国产丝袜 | 思思久久99热只有频精品66 | 天堂亚洲免费视频 | 亚洲精品一区二区三区婷婷月 | 久久久久成人精品免费播放动漫 | 成在人线av无码免费 | 无码国产色欲xxxxx视频 | 国产乱人伦偷精品视频 | 精品少妇爆乳无码av无码专区 | 欧美成人家庭影院 | 亚洲の无码国产の无码步美 | 亚洲中文无码av永久不收费 | 99久久精品国产一区二区蜜芽 | 内射老妇bbwx0c0ck | 综合激情五月综合激情五月激情1 | 伊人久久婷婷五月综合97色 | 日本乱人伦片中文三区 | 天海翼激烈高潮到腰振不止 | 国产午夜精品一区二区三区嫩草 | 国产卡一卡二卡三 | 国产精品无码一区二区三区不卡 | 国产激情艳情在线看视频 | 亚洲国产精品久久久天堂 | www国产亚洲精品久久久日本 | 久久伊人色av天堂九九小黄鸭 | 丰满人妻一区二区三区免费视频 | 99国产精品白浆在线观看免费 | 99久久精品国产一区二区蜜芽 | 国产做国产爱免费视频 | 中文字幕乱码亚洲无线三区 | 任你躁在线精品免费 | 国产舌乚八伦偷品w中 | 免费无码一区二区三区蜜桃大 | 亚洲国产欧美国产综合一区 | 日本一区二区三区免费高清 | 午夜福利试看120秒体验区 | 久久这里只有精品视频9 | 丰满少妇弄高潮了www | 无码福利日韩神码福利片 | 色五月五月丁香亚洲综合网 | 欧美色就是色 | 久久精品国产99精品亚洲 | 欧美日韩亚洲国产精品 | 给我免费的视频在线观看 | 欧美怡红院免费全部视频 | 国产福利视频一区二区 | 久久精品国产一区二区三区 | 婷婷五月综合缴情在线视频 | 亚洲中文字幕无码中文字在线 | 丝袜人妻一区二区三区 | 精品日本一区二区三区在线观看 | 动漫av一区二区在线观看 | 国产精品亚洲lv粉色 | 欧美成人家庭影院 | 丝袜美腿亚洲一区二区 | 亚洲色偷偷男人的天堂 | 高潮毛片无遮挡高清免费 | 免费看男女做好爽好硬视频 | 内射欧美老妇wbb | 亚洲精品综合一区二区三区在线 | 亚洲精品一区二区三区四区五区 | 国内精品久久久久久中文字幕 | 国产免费观看黄av片 | 中文字幕色婷婷在线视频 | 草草网站影院白丝内射 | 老熟女重囗味hdxx69 | 久久精品中文字幕一区 | 国产熟女一区二区三区四区五区 | 欧美性猛交xxxx富婆 | 亚洲国产欧美日韩精品一区二区三区 | 亚洲一区二区三区 | 久久综合九色综合欧美狠狠 | 欧洲熟妇精品视频 | 日韩精品成人一区二区三区 | 亚洲精品中文字幕久久久久 | 国产精品美女久久久 | 国产亚洲精品久久久久久大师 | 国产在热线精品视频 | 日日干夜夜干 | 国产精品.xx视频.xxtv | 欧美大屁股xxxxhd黑色 | 欧美成人免费全部网站 | 亚洲国产午夜精品理论片 | 欧洲精品码一区二区三区免费看 | 国产xxx69麻豆国语对白 | 国产午夜精品一区二区三区嫩草 | 亚洲va欧美va天堂v国产综合 | 波多野结衣av在线观看 | 欧美黑人巨大xxxxx | 精品国偷自产在线视频 | 老子影院午夜精品无码 | 亚洲人成网站免费播放 | 国产香蕉尹人视频在线 | 色狠狠av一区二区三区 | 国产亚洲精品久久久久久国模美 | 妺妺窝人体色www婷婷 | 综合人妻久久一区二区精品 | 国产真实乱对白精彩久久 | 日本一卡二卡不卡视频查询 | 成人无码影片精品久久久 | 久久精品人人做人人综合试看 | 日韩av无码一区二区三区 | 无码一区二区三区在线观看 | 国产一区二区三区影院 | www一区二区www免费 | 国产亚洲tv在线观看 | 午夜福利一区二区三区在线观看 | 熟妇人妻中文av无码 | 久久午夜无码鲁丝片 | 国产后入清纯学生妹 | 久久综合久久自在自线精品自 | 久久精品国产精品国产精品污 | 国产无套粉嫩白浆在线 | 国产精品久久久久无码av色戒 | 亚洲а∨天堂久久精品2021 | 国产成人无码av一区二区 | 狠狠色色综合网站 | 久久精品国产日本波多野结衣 | 永久免费精品精品永久-夜色 | 一本精品99久久精品77 | 亚洲最大成人网站 | 麻豆蜜桃av蜜臀av色欲av | 九九久久精品国产免费看小说 | 亚洲国产精品毛片av不卡在线 | 国产精品理论片在线观看 | 日韩亚洲欧美中文高清在线 | 久久久久久久人妻无码中文字幕爆 | 欧美国产亚洲日韩在线二区 | 亚洲人亚洲人成电影网站色 | 成人欧美一区二区三区黑人 | 日本www一道久久久免费榴莲 | 成人欧美一区二区三区黑人 | 精品少妇爆乳无码av无码专区 | 国产亚洲精品久久久久久大师 | 狠狠cao日日穞夜夜穞av | 精品久久久中文字幕人妻 | 兔费看少妇性l交大片免费 | 国产亚洲精品久久久久久久久动漫 | 国产精品福利视频导航 | 亚洲精品一区二区三区在线观看 | 国产成人综合美国十次 | 国产精品99久久精品爆乳 | 中文字幕 人妻熟女 | 亚洲 另类 在线 欧美 制服 | 国精品人妻无码一区二区三区蜜柚 | 少妇愉情理伦片bd | 曰韩无码二三区中文字幕 | 天天躁夜夜躁狠狠是什么心态 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 国产热a欧美热a在线视频 | 欧洲熟妇色 欧美 | 国产情侣作爱视频免费观看 | 亚洲日本va午夜在线电影 | 少妇性l交大片欧洲热妇乱xxx | 夜精品a片一区二区三区无码白浆 | 午夜丰满少妇性开放视频 | 一二三四在线观看免费视频 | 好男人www社区 | 亚洲精品一区二区三区在线观看 | 欧美怡红院免费全部视频 | 亚洲国产日韩a在线播放 | 99久久精品国产一区二区蜜芽 | 少妇太爽了在线观看 | 久久亚洲日韩精品一区二区三区 | 国产亚洲精品久久久久久大师 | 99国产精品白浆在线观看免费 | 人妻少妇精品无码专区二区 | 熟妇人妻无乱码中文字幕 | 亚洲国精产品一二二线 | 人妻插b视频一区二区三区 | 亚洲s色大片在线观看 | 国产精品-区区久久久狼 | 丰满人妻一区二区三区免费视频 | 久久久精品欧美一区二区免费 | 国产亚洲精品久久久久久久 | 国产精品嫩草久久久久 | 欧美熟妇另类久久久久久多毛 | 欧美喷潮久久久xxxxx | 天天燥日日燥 | 人妻天天爽夜夜爽一区二区 | 奇米影视888欧美在线观看 | 日韩欧美中文字幕公布 | 国产色视频一区二区三区 | 欧美日韩色另类综合 | 久久综合香蕉国产蜜臀av | 成在人线av无码免费 | 国产无套内射久久久国产 | 久久精品国产一区二区三区肥胖 | 伊人久久大香线蕉午夜 | 麻豆果冻传媒2021精品传媒一区下载 | 激情五月综合色婷婷一区二区 | 蜜桃视频插满18在线观看 | 国产亚av手机在线观看 | 玩弄少妇高潮ⅹxxxyw | 欧洲欧美人成视频在线 | 天天综合网天天综合色 | 久久久久亚洲精品中文字幕 | 全球成人中文在线 | 男女猛烈xx00免费视频试看 | 色 综合 欧美 亚洲 国产 | 精品日本一区二区三区在线观看 | 亚洲中文字幕va福利 | 久久久久免费精品国产 | 国产精品久久久久久无码 | 欧美国产亚洲日韩在线二区 | 国内丰满熟女出轨videos | 国产av人人夜夜澡人人爽麻豆 | 国产精品亚洲lv粉色 | 国产一区二区三区日韩精品 | 久久精品成人欧美大片 | 天天拍夜夜添久久精品大 | 婷婷丁香五月天综合东京热 | 麻豆av传媒蜜桃天美传媒 | 老司机亚洲精品影院无码 | 免费无码午夜福利片69 | 国产成人无码区免费内射一片色欲 | 少妇久久久久久人妻无码 | 久久久久久久久蜜桃 | 亚洲区欧美区综合区自拍区 | 国产午夜视频在线观看 | 亚洲精品一区二区三区大桥未久 | 天天躁日日躁狠狠躁免费麻豆 | 中文字幕无码免费久久9一区9 | 国产在线aaa片一区二区99 | 日本一区二区三区免费高清 | 熟女少妇人妻中文字幕 | 亚洲熟妇色xxxxx欧美老妇 | 99久久人妻精品免费二区 | 99国产欧美久久久精品 | 熟女少妇在线视频播放 | 欧美日韩亚洲国产精品 | 国产精品高潮呻吟av久久 | 少妇久久久久久人妻无码 | 97人妻精品一区二区三区 | 精品乱子伦一区二区三区 | 欧美人与禽猛交狂配 | 中文字幕人妻无码一夲道 | 中文毛片无遮挡高清免费 | 亚洲精品久久久久久久久久久 | 精品少妇爆乳无码av无码专区 | 日本一卡二卡不卡视频查询 | 131美女爱做视频 | 色综合久久久无码网中文 | 装睡被陌生人摸出水好爽 | 亚洲日韩av一区二区三区四区 | 日日天日日夜日日摸 | 一本色道婷婷久久欧美 | √天堂中文官网8在线 | 中文字幕人妻无码一区二区三区 | av在线亚洲欧洲日产一区二区 | 内射白嫩少妇超碰 | 亚洲日韩精品欧美一区二区 | 欧美成人高清在线播放 | 国产人妻精品午夜福利免费 | 久激情内射婷内射蜜桃人妖 | 人人妻在人人 | 日产国产精品亚洲系列 | 偷窥村妇洗澡毛毛多 | √8天堂资源地址中文在线 | 一个人看的www免费视频在线观看 | 人人超人人超碰超国产 | 国精产品一区二区三区 | 亚洲成av人影院在线观看 | 色综合久久网 | 成人免费无码大片a毛片 | 日本护士xxxxhd少妇 | 国产亚洲精品久久久久久国模美 | 亚洲精品久久久久中文第一幕 | 亚洲天堂2017无码 | 成人欧美一区二区三区黑人免费 | 一区二区三区高清视频一 | 久久午夜无码鲁丝片午夜精品 | 国产精品国产自线拍免费软件 | 亚洲无人区一区二区三区 | 欧美丰满熟妇xxxx性ppx人交 | 久久婷婷五月综合色国产香蕉 | 亚洲爆乳精品无码一区二区三区 | 好男人社区资源 | 国产精品亚洲五月天高清 | 亚洲欧美国产精品专区久久 | 亚洲色无码一区二区三区 | 丰满人妻被黑人猛烈进入 | 全球成人中文在线 | 欧美亚洲日韩国产人成在线播放 | 日韩人妻系列无码专区 | 亚洲国产一区二区三区在线观看 | 欧美日韩精品 | 久久久国产一区二区三区 | 亚洲国产成人av在线观看 | 国产成人无码a区在线观看视频app | 国产精品第一区揄拍无码 | 国内精品久久久久久中文字幕 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲国产一区二区三区在线观看 | 成熟人妻av无码专区 | 亚欧洲精品在线视频免费观看 | 鲁鲁鲁爽爽爽在线视频观看 | 亚洲午夜久久久影院 | 荫蒂添的好舒服视频囗交 | 乌克兰少妇xxxx做受 | 无码一区二区三区在线观看 | 久久国产精品_国产精品 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 亚洲国产精品久久人人爱 | 国产精品欧美成人 | 综合激情五月综合激情五月激情1 | 国产片av国语在线观看 | 久久国产精品二国产精品 | 欧美人妻一区二区三区 | 激情国产av做激情国产爱 | 国产激情无码一区二区 | 黑人巨大精品欧美黑寡妇 | 国产免费无码一区二区视频 | 欧美日韩亚洲国产精品 | 亚洲精品中文字幕乱码 | 午夜福利试看120秒体验区 | 久久久久久国产精品无码下载 | 精品久久久无码人妻字幂 | 亚洲中文字幕成人无码 | 亚洲中文字幕在线无码一区二区 | 久久人人97超碰a片精品 | 久久国产精品萌白酱免费 | 无码毛片视频一区二区本码 | 学生妹亚洲一区二区 | 日本在线高清不卡免费播放 | 伊人色综合久久天天小片 | 丰满人妻一区二区三区免费视频 | 色诱久久久久综合网ywww | 国产乱子伦视频在线播放 | 亚洲欧美日韩成人高清在线一区 | 狠狠亚洲超碰狼人久久 | 无码人妻精品一区二区三区不卡 | 无码精品人妻一区二区三区av | 鲁鲁鲁爽爽爽在线视频观看 | 无码人妻精品一区二区三区下载 | 18禁止看的免费污网站 | 天堂在线观看www | 亚洲 欧美 激情 小说 另类 | 一本久道久久综合婷婷五月 | 女人被爽到呻吟gif动态图视看 | 日韩精品久久久肉伦网站 | 香蕉久久久久久av成人 | 日韩欧美群交p片內射中文 | 精品人妻人人做人人爽夜夜爽 | 国产在线无码精品电影网 | 久久精品一区二区三区四区 | 在线观看欧美一区二区三区 | 精品亚洲韩国一区二区三区 | 无码一区二区三区在线 | 亚洲国产精品久久人人爱 | 97资源共享在线视频 | 国产真人无遮挡作爱免费视频 | 欧美 亚洲 国产 另类 | 亚洲第一无码av无码专区 | 久久久久人妻一区精品色欧美 | 亚洲中文字幕乱码av波多ji | 国产av久久久久精东av | 亚洲最大成人网站 | 亚洲精品一区二区三区大桥未久 | 国产明星裸体无码xxxx视频 | 久久精品国产精品国产精品污 | 国产欧美亚洲精品a | 亚洲日韩av一区二区三区四区 | 色窝窝无码一区二区三区色欲 | 熟妇人妻无码xxx视频 | 国产一区二区三区四区五区加勒比 | 国产特级毛片aaaaaaa高清 | 亚洲精品中文字幕乱码 | 5858s亚洲色大成网站www | 欧美变态另类xxxx | 又大又黄又粗又爽的免费视频 | 红桃av一区二区三区在线无码av | 东京无码熟妇人妻av在线网址 | 清纯唯美经典一区二区 | 国内少妇偷人精品视频免费 | 亚洲成色www久久网站 | 亚洲综合久久一区二区 | 国产精品久久久av久久久 | 色综合久久中文娱乐网 | 少妇激情av一区二区 | 国产特级毛片aaaaaa高潮流水 | 无码av中文字幕免费放 | 熟妇女人妻丰满少妇中文字幕 | 国产黄在线观看免费观看不卡 | 国产精品久久久午夜夜伦鲁鲁 | 成在人线av无码免观看麻豆 | 在线а√天堂中文官网 | 国产成人亚洲综合无码 | 日日摸天天摸爽爽狠狠97 | 丰满人妻翻云覆雨呻吟视频 | 亚洲综合久久一区二区 | 国产成人无码区免费内射一片色欲 | 福利一区二区三区视频在线观看 | 久久天天躁狠狠躁夜夜免费观看 | 久久99精品国产麻豆蜜芽 | 久9re热视频这里只有精品 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 色综合久久88色综合天天 | 亚洲а∨天堂久久精品2021 | 国产乡下妇女做爰 | 日本护士毛茸茸高潮 | 国产精品怡红院永久免费 | 亚洲日韩精品欧美一区二区 | 久久久久免费精品国产 | 国产精品福利视频导航 | 亚洲人成网站在线播放942 | 麻豆果冻传媒2021精品传媒一区下载 | 美女黄网站人色视频免费国产 | www国产精品内射老师 | 18禁黄网站男男禁片免费观看 | 亚洲精品鲁一鲁一区二区三区 | 初尝人妻少妇中文字幕 | 国产99久久精品一区二区 | 精品国产一区二区三区四区在线看 | 色综合久久久无码网中文 | 日韩人妻无码一区二区三区久久99 | 男女猛烈xx00免费视频试看 | 中文字幕精品av一区二区五区 | 国产内射爽爽大片视频社区在线 | 国产成人精品无码播放 | 毛片内射-百度 | 欧美精品国产综合久久 | 国产精品怡红院永久免费 | 国产熟女一区二区三区四区五区 | 97夜夜澡人人爽人人喊中国片 | 图片区 小说区 区 亚洲五月 | 久久综合色之久久综合 | 67194成是人免费无码 | 99国产欧美久久久精品 | 亚洲乱码中文字幕在线 | 四虎4hu永久免费 | 中文字幕人妻无码一夲道 | 日韩人妻系列无码专区 | 亚洲男女内射在线播放 | 啦啦啦www在线观看免费视频 | 欧美精品国产综合久久 | 色诱久久久久综合网ywww | 久久久久成人精品免费播放动漫 | 亚洲毛片av日韩av无码 | 亚洲综合久久一区二区 | 国产人妻精品午夜福利免费 | 无码人妻久久一区二区三区不卡 | 强辱丰满人妻hd中文字幕 | 国产精华av午夜在线观看 | 亚洲午夜福利在线观看 | 男人的天堂av网站 | 亚洲中文字幕成人无码 | 国产激情艳情在线看视频 | 成人精品天堂一区二区三区 | 乱码av麻豆丝袜熟女系列 | 欧美色就是色 | 成人性做爰aaa片免费看不忠 | 国产精品人妻一区二区三区四 | 欧美老妇与禽交 | 久激情内射婷内射蜜桃人妖 | 无码人妻精品一区二区三区不卡 | 99久久精品午夜一区二区 | 亚洲小说春色综合另类 | 99国产精品白浆在线观看免费 | 欧美激情内射喷水高潮 | 中文字幕精品av一区二区五区 | 国产精品无套呻吟在线 | 国产香蕉尹人视频在线 | 特黄特色大片免费播放器图片 | 亚洲精品成人福利网站 | 大肉大捧一进一出视频出来呀 | 国产福利视频一区二区 | 沈阳熟女露脸对白视频 | 中国女人内谢69xxxx | 亚洲无人区一区二区三区 | 精品乱码久久久久久久 | 欧洲美熟女乱又伦 | 久久久久久久人妻无码中文字幕爆 | 中文字幕无码av激情不卡 | 日韩av无码一区二区三区不卡 | 少妇无码av无码专区在线观看 | 国产性生交xxxxx无码 | 骚片av蜜桃精品一区 | 亚洲综合精品香蕉久久网 | 中文字幕无码免费久久9一区9 | 捆绑白丝粉色jk震动捧喷白浆 | 欧美黑人性暴力猛交喷水 | 午夜男女很黄的视频 | 中文久久乱码一区二区 | 欧美精品一区二区精品久久 | 久久久久久亚洲精品a片成人 | 老司机亚洲精品影院 | 丁香啪啪综合成人亚洲 | 天堂久久天堂av色综合 | 久久久久免费看成人影片 | 麻豆av传媒蜜桃天美传媒 | 色婷婷欧美在线播放内射 | 99在线 | 亚洲 | 图片小说视频一区二区 | 色窝窝无码一区二区三区色欲 | 水蜜桃色314在线观看 | 樱花草在线播放免费中文 | 成人性做爰aaa片免费看 | 欧美人与动性行为视频 | 午夜丰满少妇性开放视频 | 好屌草这里只有精品 | 国产绳艺sm调教室论坛 | 中文字幕人妻丝袜二区 | 少妇久久久久久人妻无码 | 任你躁国产自任一区二区三区 | 国产三级久久久精品麻豆三级 | 日本爽爽爽爽爽爽在线观看免 | 国产亚洲视频中文字幕97精品 | 乱人伦人妻中文字幕无码 | 国产一区二区三区四区五区加勒比 | 麻豆国产人妻欲求不满谁演的 | 国产69精品久久久久app下载 | 成人影院yy111111在线观看 | 国产猛烈高潮尖叫视频免费 | 狠狠躁日日躁夜夜躁2020 | 欧美日韩一区二区综合 | 久久无码专区国产精品s | 婷婷五月综合缴情在线视频 | 在线精品亚洲一区二区 | 欧美 日韩 人妻 高清 中文 | 欧美刺激性大交 | 中文毛片无遮挡高清免费 | 亚洲国产成人a精品不卡在线 | 中文字幕无码免费久久9一区9 | 中文字幕无码视频专区 | 狂野欧美性猛xxxx乱大交 | 伦伦影院午夜理论片 | 蜜桃无码一区二区三区 | 乱人伦人妻中文字幕无码久久网 | 在线视频网站www色 | www一区二区www免费 | 欧美激情内射喷水高潮 | 一个人免费观看的www视频 | 色窝窝无码一区二区三区色欲 | 中文无码精品a∨在线观看不卡 | 无码国产激情在线观看 | 久久久久亚洲精品中文字幕 | 国产舌乚八伦偷品w中 | 牛和人交xxxx欧美 | 日本肉体xxxx裸交 | 欧美激情综合亚洲一二区 | 中文字幕日韩精品一区二区三区 | 97久久国产亚洲精品超碰热 | 国产综合色产在线精品 | 熟妇人妻无乱码中文字幕 | 中文字幕乱妇无码av在线 | 激情国产av做激情国产爱 | 中文字幕乱码人妻无码久久 | 国产xxx69麻豆国语对白 | 国语精品一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 无码av免费一区二区三区试看 | 国产性生大片免费观看性 | 亚洲欧洲无卡二区视頻 | 初尝人妻少妇中文字幕 | 小sao货水好多真紧h无码视频 | 欧美亚洲日韩国产人成在线播放 | 久久久久99精品成人片 | 亚洲另类伦春色综合小说 | 狠狠色欧美亚洲狠狠色www | 在线播放免费人成毛片乱码 | 色狠狠av一区二区三区 | 久久99精品国产麻豆 | 丰满少妇弄高潮了www | 日日橹狠狠爱欧美视频 | 丰满诱人的人妻3 | 国产精品成人av在线观看 | 精品欧洲av无码一区二区三区 | 国产精品久久久久久无码 | 欧美第一黄网免费网站 | 成人女人看片免费视频放人 | 中文精品无码中文字幕无码专区 | 欧美亚洲国产一区二区三区 | 风流少妇按摩来高潮 | 人人妻人人澡人人爽欧美一区 | 国产精品无码mv在线观看 | 亚拍精品一区二区三区探花 | 亚洲精品www久久久 | 亚洲狠狠婷婷综合久久 | 亚洲区小说区激情区图片区 | 亚洲va中文字幕无码久久不卡 | 男人的天堂av网站 | 国产在线aaa片一区二区99 | 亚洲色欲色欲欲www在线 | 日本爽爽爽爽爽爽在线观看免 | 国产舌乚八伦偷品w中 | 草草网站影院白丝内射 | 久久久久久国产精品无码下载 | 人人妻人人澡人人爽欧美一区 | 秋霞成人午夜鲁丝一区二区三区 | 中文字幕乱码亚洲无线三区 | 亚洲第一无码av无码专区 | 波多野结衣aⅴ在线 | 水蜜桃色314在线观看 | 性欧美videos高清精品 | 国产精品爱久久久久久久 | 日日麻批免费40分钟无码 | 亚洲 a v无 码免 费 成 人 a v | 亚洲一区二区三区含羞草 | 久久精品国产亚洲精品 | 亚洲一区二区三区香蕉 | 国产莉萝无码av在线播放 | 国语自产偷拍精品视频偷 | 乱码午夜-极国产极内射 | 丰腴饱满的极品熟妇 | 丰满护士巨好爽好大乳 | 久久久久人妻一区精品色欧美 | 久久精品人妻少妇一区二区三区 | 色窝窝无码一区二区三区色欲 | 美女毛片一区二区三区四区 | 久久综合狠狠综合久久综合88 | 亚洲日韩中文字幕在线播放 | 清纯唯美经典一区二区 | 少妇高潮喷潮久久久影院 | 免费观看又污又黄的网站 | 又大又硬又黄的免费视频 | 成人欧美一区二区三区黑人 | 十八禁真人啪啪免费网站 | 一本色道久久综合亚洲精品不卡 | 无码精品人妻一区二区三区av | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产超碰人人爽人人做人人添 | 精品乱子伦一区二区三区 | 国产在线aaa片一区二区99 | 国产精品理论片在线观看 | 水蜜桃亚洲一二三四在线 | 欧美黑人乱大交 | 麻豆精品国产精华精华液好用吗 | 亚洲日本va中文字幕 | 丰满人妻精品国产99aⅴ | 国产一区二区三区四区五区加勒比 | 久久zyz资源站无码中文动漫 | 免费看少妇作爱视频 | 成人一区二区免费视频 | 97资源共享在线视频 | 久久精品一区二区三区四区 | 亚洲成av人片在线观看无码不卡 | 噜噜噜亚洲色成人网站 | 午夜性刺激在线视频免费 | 免费无码肉片在线观看 | 丰满诱人的人妻3 | 日本肉体xxxx裸交 | 亚洲s色大片在线观看 | 免费播放一区二区三区 | 婷婷五月综合激情中文字幕 | 亚洲男人av天堂午夜在 | 中文字幕av无码一区二区三区电影 | 亚洲性无码av中文字幕 | 性色欲情网站iwww九文堂 | 日日碰狠狠丁香久燥 | 蜜臀av无码人妻精品 | 国产亚洲欧美在线专区 | 亚洲国产精品一区二区美利坚 | 少妇无码吹潮 | 奇米影视7777久久精品人人爽 | 人人妻人人澡人人爽精品欧美 | 精品aⅴ一区二区三区 | 久久国产精品二国产精品 | 青草视频在线播放 | 欧美黑人乱大交 | 日本一卡2卡3卡四卡精品网站 | 理论片87福利理论电影 | 精品一二三区久久aaa片 | 夜夜影院未满十八勿进 | 中文字幕av日韩精品一区二区 | 久久五月精品中文字幕 | 久久久国产精品无码免费专区 | 国产女主播喷水视频在线观看 | 草草网站影院白丝内射 | 亚洲人成影院在线观看 | 国产深夜福利视频在线 | 色欲av亚洲一区无码少妇 | 欧美丰满老熟妇xxxxx性 | 色综合久久88色综合天天 | 久久无码中文字幕免费影院蜜桃 | 乱人伦中文视频在线观看 | 国产av久久久久精东av | 亚洲日韩精品欧美一区二区 | 国内揄拍国内精品少妇国语 | av无码电影一区二区三区 | 精品国产aⅴ无码一区二区 | 人人澡人人妻人人爽人人蜜桃 | 四虎永久在线精品免费网址 | 无码av免费一区二区三区试看 | 四虎影视成人永久免费观看视频 | 欧美老熟妇乱xxxxx | 色 综合 欧美 亚洲 国产 | 亚洲欧美中文字幕5发布 | 成 人 免费观看网站 | 国产97人人超碰caoprom | 精品国偷自产在线 | 自拍偷自拍亚洲精品10p | 特级做a爰片毛片免费69 | 蜜臀av无码人妻精品 | 97精品国产97久久久久久免费 | 又湿又紧又大又爽a视频国产 | 白嫩日本少妇做爰 | 国产成人综合色在线观看网站 | 97精品人妻一区二区三区香蕉 | 高清不卡一区二区三区 | 亚洲一区二区三区在线观看网站 | 国产偷国产偷精品高清尤物 | 激情爆乳一区二区三区 | 久精品国产欧美亚洲色aⅴ大片 | 波多野结衣av一区二区全免费观看 | 久久久久久亚洲精品a片成人 | 国产人妻精品一区二区三区 | 免费看少妇作爱视频 | 又粗又大又硬毛片免费看 | 日本爽爽爽爽爽爽在线观看免 | 婷婷综合久久中文字幕蜜桃三电影 | 性啪啪chinese东北女人 | 无码国产激情在线观看 | 精品国产乱码久久久久乱码 | 久久久精品人妻久久影视 | 内射后入在线观看一区 | 丰满少妇熟乱xxxxx视频 | 欧美第一黄网免费网站 | 巨爆乳无码视频在线观看 | 99麻豆久久久国产精品免费 | 久久久久亚洲精品中文字幕 | 亚洲啪av永久无码精品放毛片 | 精品乱码久久久久久久 | 女人被男人躁得好爽免费视频 | 99久久人妻精品免费二区 | 久久久久亚洲精品男人的天堂 | 日日麻批免费40分钟无码 | 99riav国产精品视频 | 国语精品一区二区三区 | 日本精品高清一区二区 | 内射爽无广熟女亚洲 | 久在线观看福利视频 | 丰满少妇熟乱xxxxx视频 | 国产精品第一区揄拍无码 | 国产熟妇另类久久久久 | 亚洲精品中文字幕 | 日本大香伊一区二区三区 | 欧美日韩一区二区三区自拍 | 午夜性刺激在线视频免费 | 欧美国产日韩久久mv | 任你躁在线精品免费 | 成人性做爰aaa片免费看 | 国产精品第一国产精品 | 国产精品久久精品三级 | www国产亚洲精品久久网站 | 亚洲国产高清在线观看视频 | 香蕉久久久久久av成人 | 久久国语露脸国产精品电影 | 麻花豆传媒剧国产免费mv在线 | 无码人妻黑人中文字幕 | 国产农村妇女高潮大叫 | 国产偷自视频区视频 | www成人国产高清内射 | 一区二区三区乱码在线 | 欧洲 | 国产成人无码av在线影院 | 在线观看国产一区二区三区 | 国产亚洲精品久久久久久国模美 | 国产免费久久精品国产传媒 | 日本熟妇人妻xxxxx人hd | 国产精品亚洲а∨无码播放麻豆 | 乱码午夜-极国产极内射 | 亚洲精品成人av在线 | 亚洲色欲色欲天天天www | 欧美变态另类xxxx | 国产亚洲精品久久久久久 | 一区二区传媒有限公司 | 无人区乱码一区二区三区 | 玩弄少妇高潮ⅹxxxyw | 欧美成人免费全部网站 | 日日噜噜噜噜夜夜爽亚洲精品 | 无码人妻少妇伦在线电影 | 亚洲国产精品毛片av不卡在线 | 亚洲va中文字幕无码久久不卡 | 欧美 亚洲 国产 另类 | 国产两女互慰高潮视频在线观看 | 国产肉丝袜在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产成人无码a区在线观看视频app | 精品国产一区二区三区av 性色 | 综合网日日天干夜夜久久 | 无码吃奶揉捏奶头高潮视频 | 四十如虎的丰满熟妇啪啪 | 人妻人人添人妻人人爱 | 国产肉丝袜在线观看 | 午夜精品久久久内射近拍高清 | 久久99精品久久久久久动态图 | 久久国语露脸国产精品电影 | 人妻尝试又大又粗久久 | 亚洲娇小与黑人巨大交 | a国产一区二区免费入口 | 亚洲一区二区三区无码久久 | 亚洲一区二区三区国产精华液 | 老子影院午夜精品无码 | 成人欧美一区二区三区 | 国产成人人人97超碰超爽8 | 18无码粉嫩小泬无套在线观看 | 亚洲春色在线视频 | 午夜福利一区二区三区在线观看 | 天堂在线观看www | 亚洲精品一区二区三区大桥未久 | 国模大胆一区二区三区 | 久久久精品人妻久久影视 | 色欲av亚洲一区无码少妇 | 久久精品人妻少妇一区二区三区 | 精品久久久久久亚洲精品 | 亚洲综合伊人久久大杳蕉 | 高潮毛片无遮挡高清免费视频 | 波多野结衣 黑人 | 午夜精品一区二区三区在线观看 | 77777熟女视频在线观看 а天堂中文在线官网 | 精品无码一区二区三区爱欲 | 日韩精品无码一本二本三本色 | 久精品国产欧美亚洲色aⅴ大片 | 国产日产欧产精品精品app | 亚洲一区二区三区香蕉 | 亲嘴扒胸摸屁股激烈网站 | 久久精品中文字幕大胸 | 亚洲欧美日韩综合久久久 | 亚洲爆乳大丰满无码专区 | 国产成人无码区免费内射一片色欲 | 成人精品天堂一区二区三区 | 日日摸夜夜摸狠狠摸婷婷 | 国产精品18久久久久久麻辣 | 亚洲国产一区二区三区在线观看 | 日韩少妇白浆无码系列 | 秋霞特色aa大片 | 熟妇女人妻丰满少妇中文字幕 | 97久久国产亚洲精品超碰热 | 给我免费的视频在线观看 | 97资源共享在线视频 | 鲁大师影院在线观看 | 国内揄拍国内精品人妻 | 亚洲a无码综合a国产av中文 | 久久午夜夜伦鲁鲁片无码免费 | 四十如虎的丰满熟妇啪啪 | 日韩精品无码一本二本三本色 | 又黄又爽又色的视频 | 麻豆md0077饥渴少妇 | a片免费视频在线观看 | 久久久久国色av免费观看性色 | √8天堂资源地址中文在线 | 蜜臀av无码人妻精品 | 中文无码伦av中文字幕 | 国产精品办公室沙发 | 午夜精品久久久久久久 | 伊人色综合久久天天小片 | 亚洲精品鲁一鲁一区二区三区 | 无套内谢的新婚少妇国语播放 | 无码av中文字幕免费放 | 色窝窝无码一区二区三区色欲 | 久久久婷婷五月亚洲97号色 | 久久综合给合久久狠狠狠97色 | 欧美丰满少妇xxxx性 | 国产超碰人人爽人人做人人添 | 乌克兰少妇性做爰 | 久久99精品久久久久婷婷 | 亚洲国产精品无码一区二区三区 | 俺去俺来也www色官网 | √天堂资源地址中文在线 | 99精品无人区乱码1区2区3区 | 亚洲人交乣女bbw | 奇米影视888欧美在线观看 | 强奷人妻日本中文字幕 | 免费人成在线观看网站 | 国产精品无码成人午夜电影 | aa片在线观看视频在线播放 | 99久久人妻精品免费二区 | 国色天香社区在线视频 | 日本乱偷人妻中文字幕 | 夜夜影院未满十八勿进 | 欧美性猛交xxxx富婆 | 丰满人妻被黑人猛烈进入 | 日本大香伊一区二区三区 | 国产精品无码mv在线观看 | 色婷婷欧美在线播放内射 | 丰满人妻翻云覆雨呻吟视频 | 久久久久久a亚洲欧洲av冫 | 成人一在线视频日韩国产 | 无码av中文字幕免费放 | 精品人人妻人人澡人人爽人人 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 精品国产乱码久久久久乱码 | 精品偷自拍另类在线观看 | 亚洲七七久久桃花影院 | 狠狠cao日日穞夜夜穞av | 国产免费久久精品国产传媒 | 中文字幕av日韩精品一区二区 | 在教室伦流澡到高潮hnp视频 | 成人欧美一区二区三区黑人 | 日本va欧美va欧美va精品 | 亚洲a无码综合a国产av中文 | 女人被爽到呻吟gif动态图视看 | 人妻少妇精品无码专区动漫 | 欧洲熟妇精品视频 | 97夜夜澡人人双人人人喊 | 久久精品国产99精品亚洲 | 丰满人妻被黑人猛烈进入 | 真人与拘做受免费视频 | 欧美老熟妇乱xxxxx | 在线看片无码永久免费视频 | 2020久久香蕉国产线看观看 | 中文字幕亚洲情99在线 | v一区无码内射国产 | 99国产欧美久久久精品 | 国产成人一区二区三区在线观看 | 亚洲の无码国产の无码步美 | 性啪啪chinese东北女人 | 一本久久a久久精品vr综合 | 99久久99久久免费精品蜜桃 | 亚洲人成网站免费播放 | 色综合视频一区二区三区 | 成熟妇人a片免费看网站 | 久久久精品人妻久久影视 | 玩弄少妇高潮ⅹxxxyw | 亚洲精品综合一区二区三区在线 | 国精产品一品二品国精品69xx | 人人澡人人透人人爽 | 免费看少妇作爱视频 | 久久精品人人做人人综合试看 | 天堂一区人妻无码 | 欧美亚洲日韩国产人成在线播放 | 久久午夜无码鲁丝片午夜精品 | 18禁止看的免费污网站 | 欧美亚洲国产一区二区三区 | 亚洲 激情 小说 另类 欧美 | 亚洲综合无码久久精品综合 | 亚洲国产精品美女久久久久 | 精品国产乱码久久久久乱码 | 国产精品久久久久无码av色戒 | 亚洲一区二区三区无码久久 | 日韩精品a片一区二区三区妖精 | 亚洲日韩中文字幕在线播放 | 国产激情一区二区三区 | 人人澡人摸人人添 | 国产乱码精品一品二品 | 老熟妇乱子伦牲交视频 | 国产成人无码一二三区视频 | 日产精品高潮呻吟av久久 | 午夜熟女插插xx免费视频 | 精品无码一区二区三区爱欲 | 亚洲男人av香蕉爽爽爽爽 | 亚洲日韩精品欧美一区二区 | 婷婷丁香五月天综合东京热 | 国语自产偷拍精品视频偷 | 特级做a爰片毛片免费69 | 国产口爆吞精在线视频 | 中文字幕人成乱码熟女app | 日日摸夜夜摸狠狠摸婷婷 | 久久精品成人欧美大片 | 国产亚洲精品久久久久久久 | 免费中文字幕日韩欧美 | 少妇被粗大的猛进出69影院 | 好男人社区资源 | 国产疯狂伦交大片 | 熟妇人妻中文av无码 | 又湿又紧又大又爽a视频国产 | 国产后入清纯学生妹 | 丰满少妇女裸体bbw | 激情爆乳一区二区三区 | 久久亚洲中文字幕精品一区 | 无码av中文字幕免费放 | 成在人线av无码免费 | 人妻天天爽夜夜爽一区二区 | 国产av人人夜夜澡人人爽麻豆 | 久久综合九色综合97网 | 中文字幕精品av一区二区五区 | 国产艳妇av在线观看果冻传媒 | 国产成人综合美国十次 | 国模大胆一区二区三区 | 久久久国产一区二区三区 | 久久99热只有频精品8 | 免费国产黄网站在线观看 | 夜精品a片一区二区三区无码白浆 | 又大又黄又粗又爽的免费视频 | 网友自拍区视频精品 | 88国产精品欧美一区二区三区 | 亚洲色www成人永久网址 | 国产在线精品一区二区高清不卡 | 亚洲中文字幕无码一久久区 | 中文字幕无线码免费人妻 | 美女毛片一区二区三区四区 | 日日碰狠狠丁香久燥 | 成人女人看片免费视频放人 | 无码国产乱人伦偷精品视频 | 日韩精品无码免费一区二区三区 | 国产精品无套呻吟在线 | 99久久人妻精品免费一区 | 人妻人人添人妻人人爱 | 日韩人妻无码一区二区三区久久99 | 18禁黄网站男男禁片免费观看 | 国产极品美女高潮无套在线观看 | 少妇无码一区二区二三区 | 美女黄网站人色视频免费国产 | 欧美大屁股xxxxhd黑色 | aa片在线观看视频在线播放 | 国产成人无码av片在线观看不卡 | 水蜜桃av无码 | 中文字幕无线码免费人妻 | 日韩 欧美 动漫 国产 制服 | 露脸叫床粗话东北少妇 | 日本在线高清不卡免费播放 | 1000部夫妻午夜免费 | 日韩av无码中文无码电影 | 中国女人内谢69xxxxxa片 | 精品人妻人人做人人爽 | 午夜成人1000部免费视频 | 露脸叫床粗话东北少妇 | 欧美人妻一区二区三区 | 国产欧美亚洲精品a | 国产亚洲美女精品久久久2020 | 东京热无码av男人的天堂 | 国产成人无码a区在线观看视频app | 精品无人区无码乱码毛片国产 | 帮老师解开蕾丝奶罩吸乳网站 | 国产色精品久久人妻 | 无码午夜成人1000部免费视频 | 领导边摸边吃奶边做爽在线观看 | 日韩精品a片一区二区三区妖精 | 日本护士毛茸茸高潮 | 国产成人一区二区三区在线观看 | 久久久久成人精品免费播放动漫 | 精品偷拍一区二区三区在线看 | 久久人人97超碰a片精品 | 成人影院yy111111在线观看 | 少妇无码av无码专区在线观看 | 亚洲精品久久久久中文第一幕 | 中文字幕无码日韩欧毛 | 国产精品美女久久久久av爽李琼 | 福利一区二区三区视频在线观看 | 内射后入在线观看一区 | 大肉大捧一进一出视频出来呀 | 高潮喷水的毛片 | 久久精品视频在线看15 | 伊人久久婷婷五月综合97色 | 丰满岳乱妇在线观看中字无码 | 国产精品嫩草久久久久 | 国产乱码精品一品二品 | 国产精品久久久午夜夜伦鲁鲁 | 国产激情无码一区二区app | 欧美一区二区三区视频在线观看 | 亚洲第一网站男人都懂 | 亚洲人成网站在线播放942 | 又紧又大又爽精品一区二区 | 欧美成人高清在线播放 | 国产人妻精品一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 中文亚洲成a人片在线观看 | 亚洲色偷偷偷综合网 | 久久久久成人片免费观看蜜芽 | 麻豆成人精品国产免费 | 亚洲狠狠婷婷综合久久 | 国产亲子乱弄免费视频 | 理论片87福利理论电影 | 中文无码精品a∨在线观看不卡 | 日韩精品无码一区二区中文字幕 | 日本精品人妻无码77777 天堂一区人妻无码 | 人人爽人人澡人人高潮 | 久久99精品久久久久久动态图 | 国产97色在线 | 免 | 97精品人妻一区二区三区香蕉 | 久久国产自偷自偷免费一区调 | 国产亚洲日韩欧美另类第八页 | 无码人中文字幕 | 成在人线av无码免观看麻豆 | 日韩人妻无码一区二区三区久久99 | 国产精品二区一区二区aⅴ污介绍 | 人妻少妇精品无码专区动漫 | 无码国产激情在线观看 | 亚洲无人区一区二区三区 | www国产精品内射老师 | 欧美老妇交乱视频在线观看 | 色综合久久久无码中文字幕 | 精品无人区无码乱码毛片国产 | 乱码av麻豆丝袜熟女系列 | 国产黄在线观看免费观看不卡 | 丰满妇女强制高潮18xxxx | 乌克兰少妇性做爰 | 国产卡一卡二卡三 | 日韩精品乱码av一区二区 | 久久久中文字幕日本无吗 | 亚洲无人区午夜福利码高清完整版 | 天干天干啦夜天干天2017 | 东京热男人av天堂 | 日本xxxx色视频在线观看免费 | 夜夜夜高潮夜夜爽夜夜爰爰 | www国产亚洲精品久久久日本 | 给我免费的视频在线观看 | 九九久久精品国产免费看小说 | 国产精品鲁鲁鲁 | 国产精品高潮呻吟av久久4虎 | 无码精品人妻一区二区三区av | 久久精品人人做人人综合试看 | 日本一卡2卡3卡四卡精品网站 | 久久午夜夜伦鲁鲁片无码免费 | 久久综合网欧美色妞网 | 中国女人内谢69xxxx | 国产精品人妻一区二区三区四 | 精品国精品国产自在久国产87 | 亚洲国产高清在线观看视频 | 亚洲精品久久久久久久久久久 | 给我免费的视频在线观看 | 免费网站看v片在线18禁无码 | 丰满少妇弄高潮了www | 女人色极品影院 | 国产97在线 | 亚洲 | 女人被爽到呻吟gif动态图视看 | 在线看片无码永久免费视频 | 国精产品一区二区三区 | 国产热a欧美热a在线视频 | 午夜精品久久久久久久 | 国产精品鲁鲁鲁 | 精品国产成人一区二区三区 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 日本一区二区三区免费高清 | 日本精品久久久久中文字幕 | 成人毛片一区二区 | 国产亚洲美女精品久久久2020 | 国产精品亚洲а∨无码播放麻豆 | 十八禁视频网站在线观看 | 亚洲天堂2017无码 | 图片小说视频一区二区 | 精品乱码久久久久久久 | 波多野结衣av在线观看 | 午夜嘿嘿嘿影院 | 老子影院午夜精品无码 | 久久国语露脸国产精品电影 | 国产成人一区二区三区在线观看 | 最近的中文字幕在线看视频 | 欧美人与禽zoz0性伦交 | 内射爽无广熟女亚洲 | 中文字幕人妻丝袜二区 | 国产精华av午夜在线观看 | 国产精品18久久久久久麻辣 | 亚洲精品久久久久中文第一幕 | a在线观看免费网站大全 | 亚洲一区二区三区偷拍女厕 | 扒开双腿疯狂进出爽爽爽视频 | 亚洲日韩一区二区 | 色一情一乱一伦一区二区三欧美 | 国产手机在线αⅴ片无码观看 | 亚洲综合精品香蕉久久网 | 国产九九九九九九九a片 | 又紧又大又爽精品一区二区 | 偷窥村妇洗澡毛毛多 | 人妻无码αv中文字幕久久琪琪布 | 国产激情艳情在线看视频 | 午夜性刺激在线视频免费 | 天天躁日日躁狠狠躁免费麻豆 | 一本久道高清无码视频 | 一本精品99久久精品77 | 性啪啪chinese东北女人 | 亚洲理论电影在线观看 | 国产精品人人爽人人做我的可爱 | 精品一区二区不卡无码av | 波多野结衣一区二区三区av免费 | 大地资源网第二页免费观看 | 无码成人精品区在线观看 | 亚洲の无码国产の无码影院 | 欧美日韩视频无码一区二区三 | 内射后入在线观看一区 | 国产一区二区不卡老阿姨 | 国产精品爱久久久久久久 | 久久精品国产一区二区三区肥胖 | 欧美精品无码一区二区三区 | 欧美 日韩 人妻 高清 中文 | 色情久久久av熟女人妻网站 | 精品无码av一区二区三区 | 国产精品美女久久久 | 图片小说视频一区二区 | 我要看www免费看插插视频 | 真人与拘做受免费视频一 | 天堂久久天堂av色综合 | 国产亚洲精品久久久久久国模美 | 夫妻免费无码v看片 | 十八禁视频网站在线观看 | 熟女少妇人妻中文字幕 | 久久五月精品中文字幕 | 成人无码精品一区二区三区 | 青草视频在线播放 | 国产婷婷色一区二区三区在线 | 亚洲精品国产品国语在线观看 | 精品成人av一区二区三区 | 麻豆成人精品国产免费 | 午夜时刻免费入口 | 红桃av一区二区三区在线无码av | 亚洲阿v天堂在线 | 999久久久国产精品消防器材 | 国产亚洲欧美日韩亚洲中文色 | 久久综合给久久狠狠97色 | 久久久国产精品无码免费专区 | 免费观看黄网站 | 沈阳熟女露脸对白视频 | 欧美性黑人极品hd | 久久久久免费精品国产 | 久久久婷婷五月亚洲97号色 | 欧美午夜特黄aaaaaa片 | 日本免费一区二区三区最新 | 欧美精品免费观看二区 | 日韩精品a片一区二区三区妖精 | 西西人体www44rt大胆高清 | 免费视频欧美无人区码 | 亚洲乱码国产乱码精品精 | 人妻体内射精一区二区三四 | 国产猛烈高潮尖叫视频免费 | 欧美 日韩 人妻 高清 中文 | 久久久久久av无码免费看大片 | 少妇被粗大的猛进出69影院 | 最近免费中文字幕中文高清百度 | 久久人人爽人人爽人人片av高清 | 国产无遮挡吃胸膜奶免费看 | 亚洲人成人无码网www国产 | 亚洲精品一区国产 | 国产成人综合在线女婷五月99播放 | 欧洲极品少妇 | 天堂亚洲免费视频 | 国产成人无码av片在线观看不卡 | 岛国片人妻三上悠亚 | 天天av天天av天天透 | 国产精品香蕉在线观看 | 无码av岛国片在线播放 | 东北女人啪啪对白 | 日韩av无码一区二区三区不卡 | 国产成人一区二区三区在线观看 | 国产精品丝袜黑色高跟鞋 | 日本熟妇浓毛 | 自拍偷自拍亚洲精品被多人伦好爽 | a在线观看免费网站大全 | 国内精品人妻无码久久久影院 | 人妻体内射精一区二区三四 | 亚洲熟妇自偷自拍另类 | 51国偷自产一区二区三区 | 天天摸天天碰天天添 | 粉嫩少妇内射浓精videos | 精品国偷自产在线视频 | 国产人成高清在线视频99最全资源 | 精品久久久久香蕉网 | 99久久精品无码一区二区毛片 | 人人妻人人澡人人爽欧美一区九九 | 老子影院午夜精品无码 | 亚洲 a v无 码免 费 成 人 a v | 黑人巨大精品欧美黑寡妇 | 美女极度色诱视频国产 | 大肉大捧一进一出视频出来呀 | 亚洲欧美综合区丁香五月小说 | 欧美日本精品一区二区三区 | 熟妇激情内射com | 中文毛片无遮挡高清免费 | 纯爱无遮挡h肉动漫在线播放 | 国内精品久久久久久中文字幕 | 亚洲 欧美 激情 小说 另类 | 丰满人妻精品国产99aⅴ | 亚洲自偷精品视频自拍 | 国产两女互慰高潮视频在线观看 | 午夜精品一区二区三区在线观看 | 国产香蕉97碰碰久久人人 | 无码一区二区三区在线 | 亚洲一区二区三区含羞草 | 精品久久久无码中文字幕 | 永久黄网站色视频免费直播 | 国产综合在线观看 | 激情爆乳一区二区三区 | 国产精品丝袜黑色高跟鞋 | 日本欧美一区二区三区乱码 | 色欲av亚洲一区无码少妇 | 大胆欧美熟妇xx | 性欧美熟妇videofreesex | 中文无码精品a∨在线观看不卡 | 99久久久无码国产精品免费 | 熟妇人妻无码xxx视频 | 美女张开腿让人桶 | 国产午夜亚洲精品不卡 | 亚洲精品午夜无码电影网 | 午夜性刺激在线视频免费 | 又粗又大又硬毛片免费看 | 精品熟女少妇av免费观看 | 久久国产精品偷任你爽任你 | 欧美性猛交xxxx富婆 | 四十如虎的丰满熟妇啪啪 | 丝袜足控一区二区三区 | 小sao货水好多真紧h无码视频 | 99精品无人区乱码1区2区3区 | 久久久久人妻一区精品色欧美 | 对白脏话肉麻粗话av | 日本丰满熟妇videos | aa片在线观看视频在线播放 | 中文字幕中文有码在线 | 中文字幕人妻无码一夲道 | 亚洲理论电影在线观看 | 国产乱人伦偷精品视频 | 国产综合色产在线精品 | 男女作爱免费网站 | 色综合久久久久综合一本到桃花网 | 久9re热视频这里只有精品 | 亚洲一区二区三区无码久久 | 日韩视频 中文字幕 视频一区 | 巨爆乳无码视频在线观看 | 国产 浪潮av性色四虎 | 亚洲日本一区二区三区在线 | 亚洲人成影院在线无码按摩店 | 久久国产精品_国产精品 | 一二三四社区在线中文视频 | 欧美三级a做爰在线观看 | 男女性色大片免费网站 | 一本久久a久久精品亚洲 | 国产在线一区二区三区四区五区 | v一区无码内射国产 | 精品无码一区二区三区的天堂 | 一个人免费观看的www视频 | 白嫩日本少妇做爰 | 国产精品香蕉在线观看 | 国产亚洲人成在线播放 | 女高中生第一次破苞av | 人妻少妇被猛烈进入中文字幕 | 麻豆国产人妻欲求不满 | 宝宝好涨水快流出来免费视频 | 国产亚洲精品精品国产亚洲综合 | 久久久久人妻一区精品色欧美 | 亚洲一区二区三区四区 | 奇米影视7777久久精品 | 免费乱码人妻系列无码专区 | 无码吃奶揉捏奶头高潮视频 | 少妇无套内谢久久久久 | 纯爱无遮挡h肉动漫在线播放 | 东京热一精品无码av | 欧美日韩久久久精品a片 | 荡女精品导航 | 欧美大屁股xxxxhd黑色 | 国产亚洲精品久久久久久大师 | 久久精品国产亚洲精品 | √天堂资源地址中文在线 | 国产午夜福利亚洲第一 | 亚洲精品一区二区三区在线观看 | 久久精品国产亚洲精品 | 欧美精品在线观看 | 麻豆果冻传媒2021精品传媒一区下载 | 亚洲成av人在线观看网址 | 久久精品成人欧美大片 | 亚洲日韩av一区二区三区四区 | 任你躁国产自任一区二区三区 | 国产亚洲视频中文字幕97精品 | 成年美女黄网站色大免费视频 | 无套内谢老熟女 | 中文精品无码中文字幕无码专区 | 免费看男女做好爽好硬视频 | 精品偷自拍另类在线观看 | 伊人久久大香线蕉亚洲 | 午夜精品久久久内射近拍高清 | 麻豆果冻传媒2021精品传媒一区下载 | 日日碰狠狠丁香久燥 | 亚洲 日韩 欧美 成人 在线观看 | 色综合久久中文娱乐网 | 中文字幕乱码人妻无码久久 | 久久熟妇人妻午夜寂寞影院 | 欧美人与善在线com | 亚洲热妇无码av在线播放 | 一本色道婷婷久久欧美 | 色噜噜亚洲男人的天堂 | 在线观看欧美一区二区三区 | 天堂亚洲2017在线观看 | 久久久www成人免费毛片 | 亚洲中文字幕无码一久久区 | 九九热爱视频精品 | 麻豆蜜桃av蜜臀av色欲av | 嫩b人妻精品一区二区三区 |