cauchy problem of 1st order PDE from Partial Differential Equations
pure math
加一個一個Episodes
pde進可攻退可守
pure math
f:R→R,y=f(x),dy=f′(x)dxf:\mathbb{R}\rightarrow\mathbb{R},y=f(x),dy=f'(x)dxf:R→R,y=f(x),dy=f′(x)dx
f′(x)≠0?x=f?1(y)f'(x)\neq0 \Rightarrow x=f^{-1}(y)f′(x)?=0?x=f?1(y)
A:Rn→Rn,y=Ax,dy=Adx.A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, y=Ax,dy=Adx. A:Rn→Rn,y=Ax,dy=Adx.
det(A)≠0?x=A?1ydet(A)\neq 0 \Rightarrow x=A^{-1}ydet(A)?=0?x=A?1y
In general, you can not explicitly solve for the inverse!
f:Rn→Rn,y=f(x),dy=Dfdx.f:\mathbb{R}^n \rightarrow \mathbb{R}^n, y=f(x),dy=Dfdx.f:Rn→Rn,y=f(x),dy=Dfdx.
Df=[δ(y1,y2,y3,...yn)?(x1,x2,x3,...,xn)]Df = [\frac{\delta(y_1,y_2,y_3,...y_n)}{\partial (x_1,x_2,x_3, ..., x_n)}]Df=[?(x1?,x2?,x3?,...,xn?)δ(y1?,y2?,y3?,...yn?)?]
Jacobian matrix
det(Df)≠0?x=f?1(y)det(Df) \neq 0 \Rightarrow x=f^{-1}(y)det(Df)?=0?x=f?1(y)
在連續的函數中
一個點大于0
implies
一段大于0
theorem cometheorem gobut example last forever 這個代碼的符號是在鍵盤的左上角的符號 三行五行的證明一定要會但是兩頁的證明不要看了一定要會用用久了一定會證明theoremcome,theoremgo,butexamplelastforevertheorem come, theorem go, but example last forevertheoremcome,theoremgo,butexamplelastforever
jacobian matrix
dx=xudu+xvdv,dy=yudu+yvdvdx=x_u du+x_v dv, dy = y_u du+y_v dvdx=xu?du+xv?dv,dy=yu?du+yv?dv
順便吹爆這個math formula的插件,真香
ux+3y23uy=2,u(x,1)=1+xu_x+3y^\frac{2}{3}u_y=2, u(x,1)=1+xux?+3y32?uy?=2,u(x,1)=1+x
dxdt=1,dydt=3y23,dudt=2\frac{dx}{dt}=1, \frac{dy}{dt}=3y^\frac{2}{3},\frac{du}{dt}=2dtdx?=1,dtdy?=3y32?,dtdu?=2
(x,y,u)∣t=0=(x0,y0,u0)=(s,1,1+s)(x,y,u)|_{t=0}=(x_0,y_0,u_0)=(s,1,1+s)(x,y,u)∣t=0?=(x0?,y0?,u0?)=(s,1,1+s)
x=t+s,y=(t+1)3,u=2t+1+sx=t+s,y=(t+1)^3, u = 2t+1+sx=t+s,y=(t+1)3,u=2t+1+s
?(x,y)?(t,s)\frac{\partial (x,y)}{\partial (t,s)}?(t,s)?(x,y)?
D(q)=[p1+p2+2p3cosq2p2+p3cosq2p2+p3cosq2p2]D(q) = \begin{bmatrix} p_1+p_2+2p_3cosq_{2} & p_2+p_3cosq_2\\ p_2+p_3cosq_2 & p_2 \end{bmatrix} D(q)=[p1?+p2?+2p3?cosq2?p2?+p3?cosq2??p2?+p3?cosq2?p2??]
C(q,q˙)=[?p3q˙2sinq2?p3(q˙1+q˙2)sinq2p3q˙1sinq20]C(q,\dot q) = \begin{bmatrix} -p_3\dot q_2sinq_2 &-p_3(\dot q_1+\dot q_2)sinq_2 \\ p_3\dot q_1sinq_2 & 0 \end{bmatrix} C(q,q˙?)=[?p3?q˙?2?sinq2?p3?q˙?1?sinq2???p3?(q˙?1?+q˙?2?)sinq2?0?]
=∣xtxsytys∣=∣113(t+1)20∣=?3(t+1)2≠0\frac{}{}=\begin{vmatrix} x_t & x_s \\ y_t & y_s\end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 3(t+1)^2 & 0\end{vmatrix} = -3(t+1)^2 \neq 0?=∣∣∣∣?xt?yt??xs?ys??∣∣∣∣?=∣∣∣∣?13(t+1)2?10?∣∣∣∣?=?3(t+1)2?=0
t=y13?1,s=x+1?y13t=y^{\frac{1}{3}}-1, s=x+1-y^{\frac{1}{3}}t=y31??1,s=x+1?y31?
eliminate s and t
u(x,y)=2t+1+s=x+y13u(x,y)=2t+1+s=x+y^{\frac{1}{3}}u(x,y)=2t+1+s=x+y31?
t≠?1t\neq -1t?=?1
t=?1?y=0isasingualarpointofD.E.t = -1 \Rightarrow y = 0 is a singualar point of D.E.t=?1?y=0isasingualarpointofD.E.
Dimensional Analysis: (from equation!)
[u][x]=[y]23[u][y]?[x]=[y]13\frac{[u]}{[x]}=[y]^{\frac{2}{3}}\frac{[u]}{[y]} \Rightarrow [x]=[y]^\frac{1}{3}[x][u]?=[y]32?[y][u]??[x]=[y]31?
x→λ2x,y→λyx \rightarrow \lambda^2 x, y \rightarrow \lambda yx→λ2x,y→λy
u(u(u(
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
$$$$
與50位技術專家面對面20年技術見證,附贈技術全景圖總結
以上是生活随笔為你收集整理的cauchy problem of 1st order PDE from Partial Differential Equations的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 康奈尔ECE MEng项目拒信+1 哈哈
- 下一篇: 直男对于产品经理的思考