久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > linux >内容正文

linux

Yolo-v3 and Yolo-v2 for Windows and Linux 翻译

發布時間:2025/3/19 linux 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Yolo-v3 and Yolo-v2 for Windows and Linux 翻译 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Yolo-v3 and Yolo-v2 for Windows and Linux(適用于Windows和Linux的Yolo-v3和Yolo-v2)

(neural network for object detection) - Tensor Cores can be used on Linux and Windows(用于目標檢測的神經網絡)-張量核可以在Linux和Windows上使用

More details 更多細節: http://pjreddie.com/darknet/yolo/

  • Requirements (and how to install dependecies) 需求(以及如何安裝依賴項)
  • Pre-trained models 預訓練模型
  • Explanations in issues 問題說明
  • Yolo v3 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn,…) 其他框架(TensorRT,TensorFlow,PyTorch,OpenVINO,OpenCV-dnn等)中的Yolo v3
  • Datasets 數據集
  • Improvements in this repository 此存儲庫中的改進
  • How to use 如何使用
  • How to compile on Linux 如何在Linux上編譯
    • Using cmake 使用cmake
    • Using make 使用make
  • How to compile on Windows 如何在Windows上編譯
    • Using CMake-GUI 使用CMake-GUI
    • Using vcpkg 使用vcpkg
    • Legacy way 傳統方式
  • How to train (Pascal VOC Data) 如何訓練(Pascal VOC數據)
  • How to train with multi-GPU 如何使用多GPU進行訓練
  • How to train (to detect your custom objects) 如何訓練(檢測您的自定義對象)
  • How to train tiny-yolo (to detect your custom objects) 如何訓練tiny-yolo(檢測您的自定義對象)
  • When should I stop training 我什么時候應該停止訓練
  • How to calculate mAP on PascalVOC 2007 如何在Pascal VOC 2007上計算mAP
  • How to improve object detection 如何改善物體檢測
  • How to mark bounded boxes of objects and create annotation files 如何標記對象的有界框并創建標注文件
  • How to use Yolo as DLL and SO libraries 如何將Yolo用作DLL和SO庫
  • ? mAP@0.5 (AP50) https://pjreddie.com/media/files/papers/YOLOv3.pdf
    • YOLOv3-spp better than YOLOv3 - mAP = 60.6%, FPS = 20: https://pjreddie.com/darknet/yolo/ YOLOv3-spp優于YOLOv3-mAP = 60.6%,FPS = 20

    • Yolo v3 source chart for the RetinaNet on MS COCO got from Table 1 (e): https://arxiv.org/pdf/1708.02002.pdf 表1(e)獲得了MS COCO上RetinaNet的Yolo v3源圖表

    • Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg Pascal VOC 2007上的Yolo v2

    • Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg Pascal VOC 2012上的Yolo v2(comp4)

    Requirements (需求)

    • Windows or Linux
    • CMake >= 3.8 for modern CUDA support: https://cmake.org/download/
    • CUDA 10.0: https://developer.nvidia.com/cuda-toolkit-archive (on Linux do Post-installation Actions)
    • OpenCV >= 2.4: use your preferred package manager (brew, apt), build from source using vcpkg or download from OpenCV official site (on Windows set system variable OpenCV_DIR = C:\opencv\build - where are the include and x64 folders image)
    • cuDNN >= 7.0 for CUDA 10.0 https://developer.nvidia.com/rdp/cudnn-archive (on Linux copy cudnn.h,libcudnn.so… as desribed here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar , on Windows copy cudnn.h,cudnn64_7.dll, cudnn64_7.lib as desribed here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows )
    • GPU with CC >= 3.0: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
    • on Linux GCC or Clang, on Windows MSVC 2015/2017/2019 https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community

    Pre-trained models

    There are weights-file for different cfg-files (smaller size -> faster speed & lower accuracy:

    • yolov3-openimages.cfg (247 MB COCO Yolo v3) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-openimages.weights
    • yolov3-spp.cfg (240 MB COCO Yolo v3) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-spp.weights
    • yolov3.cfg (236 MB COCO Yolo v3) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
    • yolov3-tiny.cfg (34 MB COCO Yolo v3 tiny) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights
    • enet-coco.cfg (EfficientNetb0-Yolo- 45.5% mAP@0.5 - 3.7 BFlops) enetb0-coco_final.weights and yolov3-tiny-prn.cfg (33.1% mAP@0.5 - 3.5 BFlops - more)
    CLICK ME - Yolo v2 models
    • yolov2.cfg (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
    • yolo-voc.cfg (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
    • yolov2-tiny.cfg (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
    • yolov2-tiny-voc.cfg (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
    • yolo9000.cfg (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights

    Put it near compiled: darknet.exe

    You can get cfg-files by path: darknet/cfg/

    Yolo v3 in other frameworks 其他框架下的Yolo v3

    • TensorFlow: convert yolov3.weights/cfg files to yolov3.ckpt/pb/meta: by using mystic123 or jinyu121 projects, and TensorFlow-lite
    • Intel OpenVINO 2019 R1: (Myriad X / USB Neural Compute Stick / Arria FPGA): read this manual
    • OpenCV-dnn is a very fast DNN implementation on CPU (x86/ARM-Android), use yolov3.weights/cfg with: C++ example, Python example
    • PyTorch > ONNX > CoreML > iOS how to convert cfg/weights-files to pt-file: ultralytics/yolov3 and iOS App
    • TensorRT for YOLOv3 (-70% faster inference 推理速度提高-70%): Yolo is natively supported in DeepStream 4.0
    • TVM - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about

    Datasets

    • MS COCO: use ./scripts/get_coco_dataset.sh to get labeled MS COCO detection dataset
    • OpenImages: use python ./scripts/get_openimages_dataset.py for labeling train detection dataset
    • Pascal VOC: use python ./scripts/voc_label.py for labeling Train/Test/Val detection datasets
    • ILSVRC2012 (ImageNet classification): use ./scripts/get_imagenet_train.sh (also imagenet_label.sh for labeling valid set)
    • German/Belgium/Russian/LISA/MASTIF Traffic Sign Datasets for Detection - use this parsers: https://github.com/angeligareta/Datasets2Darknet#detection-task
    • List of other datasets: https://github.com/AlexeyAB/darknet/tree/master/scripts#datasets
    Examples of results

    Others: https://www.youtube.com/user/pjreddie/videos

    Improvements in this repository

    • added support for Windows
    • improved binary neural network performance 2x-4x times for Detection on CPU and GPU if you trained your own weights by using this XNOR-net model (bit-1 inference) : https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov3-tiny_xnor.cfg
    • improved neural network performance ~7% by fusing 2 layers into 1: Convolutional + Batch-norm
    • improved neural network performance Detection 3x times, Training 2 x times on GPU Volta (Tesla V100, Titan V, …) using Tensor Cores if CUDNN_HALF defined in the Makefile or darknet.sln
    • improved performance ~1.2x times on FullHD, ~2x times on 4K, for detection on the video (file/stream) using darknet detector demo…
    • improved performance 3.5 X times of data augmentation for training (using OpenCV SSE/AVX functions instead of hand-written functions) - removes bottleneck for training on multi-GPU or GPU Volta
    • improved performance of detection and training on Intel CPU with AVX (Yolo v3 ~85%, Yolo v2 ~10%)
    • fixed usage of [reorg]-layer
    • optimized memory allocation during network resizing when random=1
    • optimized initialization GPU for detection - we use batch=1 initially instead of re-init with batch=1
    • added correct calculation of mAP, F1, IoU, Precision-Recall using command darknet detector map…
    • added drawing of chart of average-Loss and accuracy-mAP (-map flag) during training
    • run ./darknet detector demo ... -json_port 8070 -mjpeg_port 8090 as JSON and MJPEG server to get results online over the network by using your soft or Web-browser
    • added calculation of anchors for training
    • added example of Detection and Tracking objects: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
    • fixed code for use Web-cam on OpenCV > 3.x
    • run-time tips and warnings if you use incorrect cfg-file or dataset
    • many other fixes of code…

    And added manual - How to train Yolo v3/v2 (to detect your custom objects)

    Also, you might be interested in using a simplified repository where is implemented INT8-quantization (+30% speedup and -1% mAP reduced): https://github.com/AlexeyAB/yolo2_light

    How to use on the command line

    On Linux use ./darknet instead of darknet.exe, like this:./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights

    On Linux find executable file ./darknet in the root directory, while on Windows find it in the directory \build\darknet\x64

    • Yolo v3 COCO - image: darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25
    • Output coordinates of objects: darknet.exe detector test cfg/coco.data yolov3.cfg yolov3.weights -ext_output dog.jpg
    • Yolo v3 COCO - video: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output test.mp4
    • Yolo v3 COCO - WebCam 0: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 0
    • Yolo v3 COCO for net-videocam - Smart WebCam: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg
    • Yolo v3 - save result videofile res.avi: darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights test.mp4 -out_filename res.avi
    • Yolo v3 Tiny COCO - video: darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights test.mp4
    • JSON and MJPEG server that allows multiple connections from your soft or Web-browser ip-address:8070 and 8090: ./darknet detector demo ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights test50.mp4 -json_port 8070 -mjpeg_port 8090 -ext_output
    • Yolo v3 Tiny on GPU #1: darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4
    • Alternative method Yolo v3 COCO - image: darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25
    • Train on Amazon EC2, to see mAP & Loss-chart using URL like: http://ec2-35-160-228-91.us-west-2.compute.amazonaws.com:8090 in the Chrome/Firefox (Darknet should be compiled with OpenCV):
      ./darknet detector train cfg/coco.data yolov3.cfg darknet53.conv.74 -dont_show -mjpeg_port 8090 -map
    • 186 MB Yolo9000 - image: darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights
    • Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
    • To process a list of images data/train.txt and save results of detection to result.json file use:
      darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output -dont_show -out result.json < data/train.txt
    • To process a list of images data/train.txt and save results of detection to result.txt use:
      darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -dont_show -ext_output < data/train.txt > result.txt
    • Pseudo-lableing - to process a list of images data/new_train.txt and save results of detection in Yolo training format for each image as label <image_name>.txt (in this way you can increase the amount of training data) use:
      darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt
    • To calculate anchors: darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416
    • To check accuracy mAP@IoU=50: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
    • To check accuracy mAP@IoU=75: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75
    For using network video-camera mjpeg-stream with any Android smartphone
  • Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam

    • Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
    • IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
  • Connect your Android phone to computer by WiFi (through a WiFi-router) or USB

  • Start Smart WebCam on your phone

  • Replace the address below, on shown in the phone application (Smart WebCam) and launch:

    • Yolo v3 COCO-model: darknet.exe detector demo data/coco.data yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0

    How to compile on Linux (using cmake)

    The CMakeLists.txt will attempt to find installed optional dependencies like
    CUDA, cudnn, ZED and build against those. It will also create a shared object
    library file to use darknet for code development.

    Do inside the cloned repository:

    mkdir build-release cd build-release cmake .. make make install

    How to compile on Linux (using make)

    Just do make in the darknet directory.
    Before make, you can set such options in the Makefile: link

    • GPU=1 to build with CUDA to accelerate by using GPU (CUDA should be in /usr/local/cuda)
    • CUDNN=1 to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in /usr/local/cudnn)
    • CUDNN_HALF=1 to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x
    • OPENCV=1 to build with OpenCV 4.x/3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
    • DEBUG=1 to bould debug version of Yolo
    • OPENMP=1 to build with OpenMP support to accelerate Yolo by using multi-core CPU
    • LIBSO=1 to build a library darknet.so and binary runable file uselib that uses this library. Or you can try to run so LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4 How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
      or use in such a way: LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights test.mp4
    • ZED_CAMERA=1 to build a library with ZED-3D-camera support (should be ZED SDK installed), then run
      LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights zed_camera

    To run Darknet on Linux use examples from this article, just use ./darknet instead of darknet.exe, i.e. use this command: ./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights

    How to compile on Windows (using CMake-GUI)

    This is the recommended approach to build Darknet on Windows if you have already
    installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, and
    OpenCV > 2.4.

    Use CMake-GUI as shown here on this IMAGE:

  • Configure
  • Optional platform for generator (Set: x64)
  • Finish
  • Generate
  • Open Project
  • Set: x64 & Release
  • Build
  • Build solution
  • How to compile on Windows (using vcpkg)

    If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0,
    cuDNN > 7.0, OpenCV > 2.4, then to compile Darknet it is recommended to use
    CMake-GUI.

    Otherwise, follow these steps:

  • Install or update Visual Studio to at least version 2017, making sure to have it fully patched (run again the installer if not sure to automatically update to latest version). If you need to install from scratch, download VS from here: Visual Studio Community

  • Install CUDA and cuDNN

  • Install git and cmake. Make sure they are on the Path at least for the current account

  • Install vcpkg and try to install a test library to make sure everything is working, for example vcpkg install opengl

  • Define an environment variables, VCPKG_ROOT, pointing to the install path of vcpkg

  • Define another environment variable, with name VCPKG_DEFAULT_TRIPLET and value x64-windows

  • Open Powershell and type these commands:

  • PS \> cd $env:VCPKG_ROOT PS Code\vcpkg> .\vcpkg install pthreads opencv[ffmpeg] #replace with opencv[cuda,ffmpeg] in case you want to use cuda-accelerated openCV
  • Open Powershell, go to the darknet folder and build with the command .\build.ps1. If you want to use Visual Studio, you will find two custom solutions created for you by CMake after the build, one in build_win_debug and the other in build_win_release, containing all the appropriate config flags for your system.
  • How to compile on Windows (legacy way)

  • If you have CUDA 10.0, cuDNN 7.4 and OpenCV 3.x (with paths: C:\opencv_3.0\opencv\build\include & C:\opencv_3.0\opencv\build\x64\vc14\lib), then open build\darknet\darknet.sln, set x64 and Release https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg and do the: Build -> Build darknet. Also add Windows system variable CUDNN with path to CUDNN: https://user-images.githubusercontent.com/4096485/53249764-019ef880-36ca-11e9-8ffe-d9cf47e7e462.jpg

    1.1. Find files opencv_world320.dll and opencv_ffmpeg320_64.dll (or opencv_world340.dll and opencv_ffmpeg340_64.dll) in C:\opencv_3.0\opencv\build\x64\vc14\bin and put it near with darknet.exe

    1.2 Check that there are bin and include folders in the C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 if aren’t, then copy them to this folder from the path where is CUDA installed

    1.3. To install CUDNN (speedup neural network), do the following:

    • download and install cuDNN v7.4.1 for CUDA 10.0: https://developer.nvidia.com/rdp/cudnn-archive

    • add Windows system variable CUDNN with path to CUDNN: https://user-images.githubusercontent.com/4096485/53249764-019ef880-36ca-11e9-8ffe-d9cf47e7e462.jpg

    • copy file cudnn64_7.dll to the folder \build\darknet\x64 near with darknet.exe

    1.4. If you want to build without CUDNN then: open \darknet.sln -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and remove this: CUDNN;

  • If you have other version of CUDA (not 10.0) then open build\darknet\darknet.vcxproj by using Notepad, find 2 places with “CUDA 10.0” and change it to your CUDA-version. Then open \darknet.sln -> (right click on project) -> properties -> CUDA C/C++ -> Device and remove there ;compute_75,sm_75. Then do step 1

  • If you don’t have GPU, but have OpenCV 3.0 (with paths: C:\opencv_3.0\opencv\build\include & C:\opencv_3.0\opencv\build\x64\vc14\lib), then open build\darknet\darknet_no_gpu.sln, set x64 and Release, and do the: Build -> Build darknet_no_gpu

  • If you have OpenCV 2.4.13 instead of 3.0 then you should change paths after \darknet.sln is opened

    4.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories: C:\opencv_2.4.13\opencv\build\include

    4.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories: C:\opencv_2.4.13\opencv\build\x64\vc14\lib

  • If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x:
    \darknet.sln -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: CUDNN_HALF;

    Note: CUDA must be installed only after Visual Studio has been installed.

  • How to compile (custom):

    Also, you can to create your own darknet.sln & darknet.vcxproj, this example for CUDA 9.1 and OpenCV 3.0

    Then add to your created project:

    • (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories, put here:

    C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include

    • (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
    • add to project:
      • all .c files
      • all .cu files
      • file http_stream.cpp from \src directory
      • file darknet.h from \include directory
    • (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:

    C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;%(AdditionalLibraryDirectories)

    • (right click on project) -> properties -> Linker -> Input -> Additional dependecies, put here:

    ..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)

    • (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions

    OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)

    • compile to .exe (X64 & Release) and put .dll-s near with .exe: https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg

      • pthreadVC2.dll, pthreadGC2.dll from \3rdparty\dll\x64

      • cusolver64_91.dll, curand64_91.dll, cudart64_91.dll, cublas64_91.dll - 91 for CUDA 9.1 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin

      • For OpenCV 3.2: opencv_world320.dll and opencv_ffmpeg320_64.dll from C:\opencv_3.0\opencv\build\x64\vc14\bin

      • For OpenCV 2.4.13: opencv_core2413.dll, opencv_highgui2413.dll and opencv_ffmpeg2413_64.dll from C:\opencv_2.4.13\opencv\build\x64\vc14\bin

    How to train (Pascal VOC Data):

  • Download pre-trained weights for the convolutional layers (154 MB): http://pjreddie.com/media/files/darknet53.conv.74 and put to the directory build\darknet\x64

  • Download The Pascal VOC Data and unpack it to directory build\darknet\x64\data\voc will be created dir build\darknet\x64\data\voc\VOCdevkit\:

    • http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
    • http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
    • http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar

    2.1 Download file voc_label.py to dir build\darknet\x64\data\voc: http://pjreddie.com/media/files/voc_label.py

  • Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe

  • Run command: python build\darknet\x64\data\voc\voc_label.py (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)

  • Run command: type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt

  • Set batch=64 and subdivisions=8 in the file yolov3-voc.cfg: link

  • Start training by using train_voc.cmd or by using the command line:

    darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

  • (Note: To disable Loss-Window use flag -dont_show. If you are using CPU, try darknet_no_gpu.exe instead of darknet.exe.)

    If required change paths in the file build\darknet\cfg\voc.data

    More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc

    Note: If during training you see nan values for avg (loss) field - then training goes wrong, but if nan is in some other lines - then training goes well.

    How to train with multi-GPU:

  • Train it first on 1 GPU for like 1000 iterations: darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

  • Then stop and by using partially-trained model /backup/yolov3-voc_1000.weights run training with multigpu (up to 4 GPUs): darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3

  • Only for small datasets sometimes better to decrease learning rate, for 4 GPUs set learning_rate = 0.00025 (i.e. learning_rate = 0.001 / GPUs). In this case also increase 4x times burn_in = and max_batches = in your cfg-file. I.e. use burn_in = 4000 instead of 1000. Same goes for steps= if policy=steps is set.

    https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ

    How to train (to detect your custom objects):

    (to train old Yolo v2 yolov2-voc.cfg, yolov2-tiny-voc.cfg, yolo-voc.cfg, yolo-voc.2.0.cfg, … click by the link) 訓練舊的Yolo v2 yolov2-voc.cfg,yolov2-tiny-voc.cfg,yolo-voc.cfg,yolo-voc.2.0.cfg

    Training Yolo v3 訓練Yolo v3:

  • Create file yolo-obj.cfg with the same content as in yolov3.cfg (or copy yolov3.cfg to yolo-obj.cfg) and 創建文件yolo-obj.cfg,其內容與yolov3.cfg中的內容相同(或將yolov3.cfg復制到yolo-obj.cfg),然后:
    • change line batch to batch=64 將批次行更改為 batch= 64
    • change line subdivisions to subdivisions=8 將細分行更改為 subdivisions= 8
    • change line max_batches to (classes*2000 but not less than 4000), f.e. max_batches=6000 if you train for 3 classes 將行最大批次行更改為(classs * 2000但不少于4000),例如您訓練3個類,則 max_batches=6000
    • change line steps to 80% and 90% of max_batches, f.e. steps=4800,5400 將步長更改為最大批次的80%和90%,例如 steps= 4800,5400
    • change line classes=80 to your number of objects in each of 3 [yolo]-layers 將3層[yolo]中每一層的“ classes = 80”行更改為你的對象數:
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
    • change [filters=255] to filters=(classes + 5)x3 in the 3 [convolutional] before each [yolo] layer
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
      • https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776

    So if classes=1 then should be filters=18. If classes=2 then write filters=21.

    (Do not write in the cfg-file: filters=(classes + 5)x3)

    (Generally filters depends on the classes, coords and number of masks, i.e. filters=(classes + coords + 1)*<number of mask>, where mask is indices of anchors. If mask is absence, then filters=(classes + coords + 1)*num)

    So for example, for 2 objects, your file yolo-obj.cfg should differ from yolov3.cfg in such lines in each of 3 [yolo]-layers:

    [convolutional] filters=21[region] classes=2
  • Create file obj.names in the directory build\darknet\x64\data\, with objects names - each in new line

  • Create file obj.data in the directory build\darknet\x64\data\, containing (where classes = number of objects):

  • classes= 2 train = data/train.txt valid = data/test.txt names = data/obj.names backup = backup/
  • Put image-files (.jpg) of your objects in the directory build\darknet\x64\data\obj\

  • You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark

  • It will create .txt-file for each .jpg-image-file - in the same directory and with the same name, but with .txt-extension, and put to file: object number and object coordinates on this image, for each object in new line:

    <object-class> <x_center> <y_center> <width> <height>

    Where:

    • <object-class> - integer object number from 0 to (classes-1)
    • <x_center> <y_center> <width> <height> - float values relative to width and height of image, it can be equal from (0.0 to 1.0]
    • for example: <x> = <absolute_x> / <image_width> or <height> = <absolute_height> / <image_height>
    • atention: <x_center> <y_center> - are center of rectangle (are not top-left corner)

    For example for img1.jpg you will be created img1.txt containing:

    1 0.716797 0.395833 0.216406 0.147222 0 0.687109 0.379167 0.255469 0.158333 1 0.420312 0.395833 0.140625 0.166667
  • Create file train.txt in directory build\darknet\x64\data\, with filenames of your images, each filename in new line, with path relative to darknet.exe, for example containing:
  • data/obj/img1.jpg data/obj/img2.jpg data/obj/img3.jpg
  • Download pre-trained weights for the convolutional layers (154 MB): https://pjreddie.com/media/files/darknet53.conv.74 and put to the directory build\darknet\x64

  • Start training by using the command line: darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74

    To train on Linux use command: ./darknet detector train data/obj.data yolo-obj.cfg darknet53.conv.74 (just use ./darknet instead of darknet.exe)

    • (file yolo-obj_last.weights will be saved to the build\darknet\x64\backup\ for each 100 iterations)
    • (file yolo-obj_xxxx.weights will be saved to the build\darknet\x64\backup\ for each 1000 iterations)
    • (to disable Loss-Window use darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show, if you train on computer without monitor like a cloud Amazon EC2)
    • (to see the mAP & Loss-chart during training on remote server without GUI, use command darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show -mjpeg_port 8090 -map then open URL http://ip-address:8090 in Chrome/Firefox browser)
  • 8.1. For training with mAP (mean average precisions) calculation for each 4 Epochs (set valid=valid.txt or train.txt in obj.data file) and run: darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -map

  • After training is complete - get result yolo-obj_final.weights from path build\darknet\x64\backup\
    • After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just start training using: darknet.exe detector train data/obj.data yolo-obj.cfg backup\yolo-obj_2000.weights

      (in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations if(iterations > 1000))

    • Also you can get result earlier than all 45000 iterations.

    Note: If during training you see nan values for avg (loss) field - then training goes wrong, but if nan is in some other lines - then training goes well.

    Note: If you changed width= or height= in your cfg-file, then new width and height must be divisible by 32.

    Note: After training use such command for detection: darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights

    Note: if error Out of memory occurs then in .cfg-file you should increase subdivisions=16, 32 or 64: link

    How to train tiny-yolo (to detect your custom objects):

    Do all the same steps as for the full yolo model as described above. With the exception of:

    • Download default weights file for yolov3-tiny: https://pjreddie.com/media/files/yolov3-tiny.weights
    • Get pre-trained weights yolov3-tiny.conv.15 using command: darknet.exe partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15
    • Make your custom model yolov3-tiny-obj.cfg based on cfg/yolov3-tiny_obj.cfg instead of yolov3.cfg
    • Start training: darknet.exe detector train data/obj.data yolov3-tiny-obj.cfg yolov3-tiny.conv.15

    For training Yolo based on other models (DenseNet201-Yolo or ResNet50-Yolo), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd
    If you made you custom model that isn’t based on other models, then you can train it without pre-trained weights, then will be used random initial weights.

    When should I stop training:

    Usually sufficient 2000 iterations for each class(object), but not less than 4000 iterations in total. But for a more precise definition when you should stop training, use the following manual:

  • During training, you will see varying indicators of error, and you should stop when no longer decreases 0.XXXXXXX avg:
  • Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000, count: 8
    Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000, count: 8

    9002: 0.211667, 0.60730 avg, 0.001000 rate, 3.868000 seconds, 576128 images
    Loaded: 0.000000 seconds

    • 9002 - iteration number (number of batch)
    • 0.60730 avg - average loss (error) - the lower, the better

    When you see that average loss 0.xxxxxx avg no longer decreases at many iterations then you should stop training. The final avgerage loss can be from 0.05 (for a small model and easy dataset) to 3.0 (for a big model and a difficult dataset).

  • Once training is stopped, you should take some of last .weights-files from darknet\build\darknet\x64\backup and choose the best of them:
  • For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. Overfitting - is case when you can detect objects on images from training-dataset, but can’t detect objects on any others images. You should get weights from Early Stopping Point:

    [外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-qsA3ggEp-1571902453893)(https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png)]

    To get weights from Early Stopping Point:

    2.1. At first, in your file obj.data you must specify the path to the validation dataset valid = valid.txt (format of valid.txt as in train.txt), and if you haven’t validation images, just copy data\train.txt to data\valid.txt.

    2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:

    (If you use another GitHub repository, then use darknet.exe detector recall… instead of darknet.exe detector map…)

    • darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
    • darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights
    • darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights

    And comapre last output lines for each weights (7000, 8000, 9000):

    Choose weights-file with the highest mAP (mean average precision) or IoU (intersect over union)

    For example, bigger mAP gives weights yolo-obj_8000.weights - then use this weights for detection.

    Or just train with -map flag:

    darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -map

    So you will see mAP-chart (red-line) in the Loss-chart Window. mAP will be calculated for each 4 Epochs using valid=valid.txt file that is specified in obj.data file (1 Epoch = images_in_train_txt / batch iterations)

    (to change the max x-axis value - change max_batches= parameter to 2000*classes, f.e. max_batches=6000 for 3 classes)

    Example of custom object detection: darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights

    • IoU (intersect over union) - average instersect over union of objects and detections for a certain threshold = 0.24

    • mAP (mean average precision) - mean value of average precisions for each class, where average precision is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf

    mAP is default metric of precision in the PascalVOC competition, this is the same as AP50 metric in the MS COCO competition.
    In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but IoU always has the same meaning.

    How to calculate mAP on PascalVOC 2007:

  • To calculate mAP (mean average precision) on PascalVOC-2007-test:
    • Download PascalVOC dataset, install Python 3.x and get file 2007_test.txt as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data
    • Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir build\darknet\x64\data\ then run voc_label_difficult.py to get the file difficult_2007_test.txt
    • Remove symbol # from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4
    • Then there are 2 ways to get mAP:
    • Using Darknet + Python: run the file build/darknet/x64/calc_mAP_voc_py.cmd - you will get mAP for yolo-voc.cfg model, mAP = 75.9%
    • Using this fork of Darknet: run the file build/darknet/x64/calc_mAP.cmd - you will get mAP for yolo-voc.cfg model, mAP = 75.8%

    (The article specifies the value of mAP = 76.8% for YOLOv2 416×416, page-4 table-3: https://arxiv.org/pdf/1612.08242v1.pdf. We get values lower - perhaps due to the fact that the model was trained on a slightly different source code than the code on which the detection is was done)

    • if you want to get mAP for tiny-yolo-voc.cfg model, then un-comment line for tiny-yolo-voc.cfg and comment line for yolo-voc.cfg in the .cmd-file
    • if you have Python 2.x instead of Python 3.x, and if you use Darknet+Python-way to get mAP, then in your cmd-file use reval_voc.py and voc_eval.py instead of reval_voc_py3.py and voc_eval_py3.py from this directory: https://github.com/AlexeyAB/darknet/tree/master/scripts

    Custom object detection:

    Example of custom object detection: darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights

    [外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-LEPJtdTZ-1571902453895)(https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg)]

    How to improve object detection:

  • Before training:
    • set flag random=1 in your .cfg-file - it will increase precision by training Yolo for different resolutions: link

    • increase network resolution in your .cfg-file (height=608, width=608 or any value multiple of 32) - it will increase precision

    • check that each object that you want to detect is mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, …). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark

    • my Loss is very high and mAP is very low, is training wrong? Run training with -show_imgs flag at the end of training command, do you see correct bounded boxes of objects (in windows or in files aug_...jpg)? If no - your training dataset is wrong.

    • for each object which you want to detect - there must be at least 1 similar object in the Training dataset with about the same: shape, side of object, relative size, angle of rotation, tilt, illumination. So desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 different images for each class or more, and you should train 2000*classes iterations or more

    • desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty .txt files) - use as many images of negative samples as there are images with objects

    • What is the best way to mark objects: label only the visible part of the object, or label the visible and overlapped part of the object, or label a little more than the entire object (with a little gap)? Mark as you like - how would you like it to be detected.

    • for training with a large number of objects in each image, add the parameter max=200 or higher value in the last [yolo]-layer or [region]-layer in your cfg-file (the global maximum number of objects that can be detected by YoloV3 is 0,0615234375*(width*height) where are width and height are parameters from [net] section in cfg-file)

    • for training for small objects (smaller than 16x16 after the image is resized to 416x416) - set layers = -1, 11 instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720
      and set stride=4 instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717

    • for training for both small and large objects use modified models:

      • Full-model: 5 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3_5l.cfg
      • Tiny-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny_3l.cfg
      • Spatial-full-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-spp.cfg
    • If you train the model to distinguish Left and Right objects as separate classes (left/right hand, left/right-turn on road signs, …) then for disabling flip data augmentation - add flip=0 here: https://github.com/AlexeyAB/darknet/blob/3d2d0a7c98dbc8923d9ff705b81ff4f7940ea6ff/cfg/yolov3.cfg#L17

    • General rule - your training dataset should include such a set of relative sizes of objects that you want to detect:

      • train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width
      • train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height

      I.e. for each object from Test dataset there must be at least 1 object in the Training dataset with the same class_id and about the same relative size:

      object width in percent from Training dataset ~= object width in percent from Test dataset

      That is, if only objects that occupied 80-90% of the image were present in the training set, then the trained network will not be able to detect objects that occupy 1-10% of the image.

    • to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param stopbackward=1 here: https://github.com/AlexeyAB/darknet/blob/6d44529cf93211c319813c90e0c1adb34426abe5/cfg/yolov3.cfg#L548
      then do this command: ./darknet partial cfg/yolov3.cfg yolov3.weights yolov3.conv.81 81 will be created file yolov3.conv.81,
      then train by using weights file yolov3.conv.81 instead of darknet53.conv.74

    • each: model of object, side, illimination, scale, each 30 grad of the turn and inclination angles - these are different objects from an internal perspective of the neural network. So the more different objects you want to detect, the more complex network model should be used.

    • Only if you are an expert in neural detection networks - recalculate anchors for your dataset for width and height from cfg-file:
      darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416
      then set the same 9 anchors in each of 3 [yolo]-layers in your cfg-file. But you should change indexes of anchors masks= for each [yolo]-layer, so that 1st-[yolo]-layer has anchors larger than 60x60, 2nd larger than 30x30, 3rd remaining. Also you should change the filters=(classes + 5)*<number of mask> before each [yolo]-layer. If many of the calculated anchors do not fit under the appropriate layers - then just try using all the default anchors.

  • After training - for detection:
    • Increase network-resolution by set in your .cfg-file (height=608 and width=608) or (height=832 and width=832) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: link

      • it is not necessary to train the network again, just use .weights-file already trained for 416x416 resolution
      • but to get even greater accuracy you should train with higher resolution 608x608 or 832x832, note: if error Out of memory occurs then in .cfg-file you should increase subdivisions=16, 32 or 64: link

    How to mark bounded boxes of objects and create annotation files:

    Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark

    With example of: train.txt, obj.names, obj.data, yolo-obj.cfg, air1-6.txt, bird1-4.txt for 2 classes of objects (air, bird) and train_obj.cmd with example how to train this image-set with Yolo v2 & v3

    Different tools for marking objects in images:

  • in C++: https://github.com/AlexeyAB/Yolo_mark
  • in Python: https://github.com/tzutalin/labelImg
  • in Python: https://github.com/Cartucho/OpenLabeling
  • in C++: https://www.ccoderun.ca/darkmark/
  • Using Yolo9000

    Simultaneous detection and classification of 9000 objects: darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights data/dog.jpg

    • yolo9000.weights - (186 MB Yolo9000 Model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights

    • yolo9000.cfg - cfg-file of the Yolo9000, also there are paths to the 9k.tree and coco9k.map https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218

      • 9k.tree - WordTree of 9418 categories - <label> <parent_it>, if parent_id == -1 then this label hasn’t parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree

      • coco9k.map - map 80 categories from MSCOCO to WordTree 9k.tree: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map

    • combine9k.data - data file, there are paths to: 9k.labels, 9k.names, inet9k.map, (change path to your combine9k.train.list): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data

      • 9k.labels - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels

      • 9k.names -
        9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names

      • inet9k.map - map 200 categories from ImageNet to WordTree 9k.tree: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map

    How to use Yolo as DLL and SO libraries

    • on Linux
      • using build.sh or
      • build darknet using cmake or
      • set LIBSO=1 in the Makefile and do make
    • on Windows
      • using build.ps1 or
      • build darknet using cmake or
      • compile build\darknet\yolo_cpp_dll.sln solution or build\darknet\yolo_cpp_dll_no_gpu.sln solution

    There are 2 APIs:

    • C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h

      • Python examples using the C API::
        • https://github.com/AlexeyAB/darknet/blob/master/darknet.py
        • https://github.com/AlexeyAB/darknet/blob/master/darknet_video.py
    • C++ API: https://github.com/AlexeyAB/darknet/blob/master/include/yolo_v2_class.hpp

      • C++ example that uses C++ API: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp

  • To compile Yolo as C++ DLL-file yolo_cpp_dll.dll - open the solution build\darknet\yolo_cpp_dll.sln, set x64 and Release, and do the: Build -> Build yolo_cpp_dll

    • You should have installed CUDA 10.0
    • To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: CUDNN;
  • To use Yolo as DLL-file in your C++ console application - open the solution build\darknet\yolo_console_dll.sln, set x64 and Release, and do the: Build -> Build yolo_console_dll

    • you can run your console application from Windows Explorer build\darknet\x64\yolo_console_dll.exe
      use this command: yolo_console_dll.exe data/coco.names yolov3.cfg yolov3.weights test.mp4

    • after launching your console application and entering the image file name - you will see info for each object:
      <obj_id> <left_x> <top_y> <width> <height> <probability>

    • to use simple OpenCV-GUI you should uncomment line //#define OPENCV in yolo_console_dll.cpp-file: link

    • you can see source code of simple example for detection on the video file: link

  • yolo_cpp_dll.dll-API: link

    struct bbox_t {unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded boxfloat prob; // confidence - probability that the object was found correctlyunsigned int obj_id; // class of object - from range [0, classes-1]unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)unsigned int frames_counter;// counter of frames on which the object was detected };class Detector { public:Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);~Detector();std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);static image_t load_image(std::string image_filename);static void free_image(image_t m);#ifdef OPENCVstd::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const; #endif }; 與50位技術專家面對面20年技術見證,附贈技術全景圖

    總結

    以上是生活随笔為你收集整理的Yolo-v3 and Yolo-v2 for Windows and Linux 翻译的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    天天爽夜夜爽夜夜爽 | 老太婆性杂交欧美肥老太 | 偷窥村妇洗澡毛毛多 | 亚洲精品综合五月久久小说 | 精品久久8x国产免费观看 | 内射巨臀欧美在线视频 | 日韩精品无码一本二本三本色 | 精品亚洲韩国一区二区三区 | 久久无码专区国产精品s | 亚洲一区二区三区无码久久 | 亚洲综合精品香蕉久久网 | 妺妺窝人体色www在线小说 | 永久免费观看美女裸体的网站 | 亚洲熟妇色xxxxx欧美老妇y | 青青青爽视频在线观看 | 久久久成人毛片无码 | 欧美zoozzooz性欧美 | 少妇被粗大的猛进出69影院 | 亚洲人成网站在线播放942 | 国产人成高清在线视频99最全资源 | 国产婷婷色一区二区三区在线 | 无码一区二区三区在线 | 国产激情精品一区二区三区 | 久久综合香蕉国产蜜臀av | 欧美成人午夜精品久久久 | 99久久久国产精品无码免费 | 亚洲gv猛男gv无码男同 | 欧美性黑人极品hd | 日本一区二区三区免费播放 | 国产精品美女久久久久av爽李琼 | 亚洲欧美精品aaaaaa片 | 强奷人妻日本中文字幕 | 永久免费精品精品永久-夜色 | 四虎国产精品一区二区 | 色五月丁香五月综合五月 | 久久久中文字幕日本无吗 | 精品国产成人一区二区三区 | 国产精品无码成人午夜电影 | 免费乱码人妻系列无码专区 | 99久久精品午夜一区二区 | 国产精品人人爽人人做我的可爱 | 亚洲日韩av一区二区三区中文 | 一本色道久久综合狠狠躁 | 18禁黄网站男男禁片免费观看 | 亚洲乱码日产精品bd | 无套内射视频囯产 | 午夜丰满少妇性开放视频 | 亚洲欧美日韩综合久久久 | 377p欧洲日本亚洲大胆 | 日韩精品成人一区二区三区 | www成人国产高清内射 | 97精品国产97久久久久久免费 | 爽爽影院免费观看 | 亚洲精品一区二区三区婷婷月 | 国产热a欧美热a在线视频 | 18无码粉嫩小泬无套在线观看 | 欧美国产日韩久久mv | 好爽又高潮了毛片免费下载 | 成年美女黄网站色大免费全看 | 国产成人无码区免费内射一片色欲 | 国产人妻人伦精品 | 国内丰满熟女出轨videos | 久久99精品国产麻豆蜜芽 | 久久久久亚洲精品男人的天堂 | 伊人久久大香线焦av综合影院 | 97久久精品无码一区二区 | 欧美人妻一区二区三区 | 无码人妻少妇伦在线电影 | 日韩精品一区二区av在线 | 精品国产一区二区三区av 性色 | 人妻互换免费中文字幕 | 亚洲精品国产a久久久久久 | 亚洲熟妇自偷自拍另类 | 国产av一区二区三区最新精品 | 2020久久香蕉国产线看观看 | 日韩少妇内射免费播放 | 中文字幕无码免费久久9一区9 | 成在人线av无码免费 | 人人超人人超碰超国产 | 国产午夜无码精品免费看 | 中文字幕精品av一区二区五区 | 狂野欧美性猛交免费视频 | 亚洲国产成人av在线观看 | 四虎影视成人永久免费观看视频 | 天堂久久天堂av色综合 | 98国产精品综合一区二区三区 | 在线 国产 欧美 亚洲 天堂 | 99久久久无码国产精品免费 | 亚洲精品一区二区三区婷婷月 | 波多野结衣av一区二区全免费观看 | 人妻天天爽夜夜爽一区二区 | 午夜丰满少妇性开放视频 | 久久久成人毛片无码 | 成人无码视频免费播放 | 熟女少妇在线视频播放 | 国产一区二区三区精品视频 | 久久国产劲爆∧v内射 | 欧美人与动性行为视频 | √天堂资源地址中文在线 | 中文字幕 人妻熟女 | 亚洲精品久久久久久久久久久 | 国产美女精品一区二区三区 | 精品国产青草久久久久福利 | 天海翼激烈高潮到腰振不止 | 中文无码伦av中文字幕 | 天天做天天爱天天爽综合网 | 在线播放亚洲第一字幕 | 中文字幕 人妻熟女 | 亚无码乱人伦一区二区 | 亚洲国产av美女网站 | 国产无遮挡吃胸膜奶免费看 | 中文字幕无线码免费人妻 | 国产女主播喷水视频在线观看 | 国产一区二区不卡老阿姨 | 97人妻精品一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 丝袜 中出 制服 人妻 美腿 | 乱中年女人伦av三区 | 激情五月综合色婷婷一区二区 | 精品久久久久久人妻无码中文字幕 | 免费无码一区二区三区蜜桃大 | 日韩亚洲欧美中文高清在线 | 高清国产亚洲精品自在久久 | 精品厕所偷拍各类美女tp嘘嘘 | 高清无码午夜福利视频 | 色婷婷综合中文久久一本 | 日本爽爽爽爽爽爽在线观看免 | 丰满岳乱妇在线观看中字无码 | 永久免费精品精品永久-夜色 | 色情久久久av熟女人妻网站 | √8天堂资源地址中文在线 | 中文字幕无码免费久久99 | aa片在线观看视频在线播放 | 国产乱人伦偷精品视频 | 国产乱子伦视频在线播放 | 成在人线av无码免观看麻豆 | 亚洲国产成人av在线观看 | 亚洲乱亚洲乱妇50p | 免费观看的无遮挡av | 国产情侣作爱视频免费观看 | 成熟人妻av无码专区 | 国产成人精品一区二区在线小狼 | 亚洲人成人无码网www国产 | 狠狠噜狠狠狠狠丁香五月 | 色狠狠av一区二区三区 | 亚洲中文字幕乱码av波多ji | 欧美放荡的少妇 | 亚洲国产精品无码久久久久高潮 | 久久精品国产大片免费观看 | 红桃av一区二区三区在线无码av | 国产成人亚洲综合无码 | 无遮挡国产高潮视频免费观看 | 日本xxxx色视频在线观看免费 | 成熟女人特级毛片www免费 | 天堂在线观看www | 久精品国产欧美亚洲色aⅴ大片 | www国产精品内射老师 | 伦伦影院午夜理论片 | 久久天天躁夜夜躁狠狠 | ass日本丰满熟妇pics | 水蜜桃色314在线观看 | 无遮无挡爽爽免费视频 | 国产精品久免费的黄网站 | 午夜熟女插插xx免费视频 | 人人妻人人澡人人爽精品欧美 | 亚洲小说图区综合在线 | 国产小呦泬泬99精品 | 女人被男人躁得好爽免费视频 | 蜜臀aⅴ国产精品久久久国产老师 | 日韩视频 中文字幕 视频一区 | 牲欲强的熟妇农村老妇女视频 | 久久精品国产99久久6动漫 | 中文无码精品a∨在线观看不卡 | 国产疯狂伦交大片 | 无码av岛国片在线播放 | 永久免费观看国产裸体美女 | 色爱情人网站 | 妺妺窝人体色www在线小说 | 九月婷婷人人澡人人添人人爽 | 六十路熟妇乱子伦 | 亚洲中文无码av永久不收费 | 丰满人妻一区二区三区免费视频 | 亚洲の无码国产の无码影院 | 免费观看又污又黄的网站 | 国产人妻大战黑人第1集 | 久久国产精品精品国产色婷婷 | 99久久婷婷国产综合精品青草免费 | 少妇被粗大的猛进出69影院 | 国产精品二区一区二区aⅴ污介绍 | 中文字幕无码免费久久9一区9 | 中文字幕无线码免费人妻 | 2020最新国产自产精品 | 4hu四虎永久在线观看 | 亚洲国产欧美在线成人 | 久久精品国产一区二区三区肥胖 | 无码人妻出轨黑人中文字幕 | av无码不卡在线观看免费 | 亚洲 高清 成人 动漫 | 任你躁在线精品免费 | 久久精品国产99精品亚洲 | 激情爆乳一区二区三区 | 亚洲精品国产a久久久久久 | 色老头在线一区二区三区 | 美女黄网站人色视频免费国产 | 亚洲国产一区二区三区在线观看 | 国产精品人妻一区二区三区四 | 青青青爽视频在线观看 | 亚洲成av人影院在线观看 | 67194成是人免费无码 | 中国女人内谢69xxxx | 乱人伦人妻中文字幕无码久久网 | 精品厕所偷拍各类美女tp嘘嘘 | 欧美人与善在线com | 无遮挡啪啪摇乳动态图 | 国产卡一卡二卡三 | 亚洲国产综合无码一区 | 国产精品久久久久久亚洲毛片 | 伦伦影院午夜理论片 | 少妇无码一区二区二三区 | 亚洲熟女一区二区三区 | 精品国产福利一区二区 | 成人影院yy111111在线观看 | 国产9 9在线 | 中文 | 2019nv天堂香蕉在线观看 | 狠狠cao日日穞夜夜穞av | 美女扒开屁股让男人桶 | 日韩欧美成人免费观看 | 午夜性刺激在线视频免费 | 国产亚洲日韩欧美另类第八页 | 久久国内精品自在自线 | 免费观看又污又黄的网站 | 国产人妻人伦精品 | 美女黄网站人色视频免费国产 | 亚洲中文无码av永久不收费 | 亚洲一区二区三区在线观看网站 | 日欧一片内射va在线影院 | 九九在线中文字幕无码 | 午夜精品一区二区三区的区别 | 两性色午夜免费视频 | 久久午夜无码鲁丝片秋霞 | 久久www免费人成人片 | 欧美野外疯狂做受xxxx高潮 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 麻豆精品国产精华精华液好用吗 | 国产三级精品三级男人的天堂 | 高潮喷水的毛片 | 中文无码伦av中文字幕 | 国产无套粉嫩白浆在线 | 欧美黑人巨大xxxxx | 欧美激情综合亚洲一二区 | 大肉大捧一进一出好爽视频 | 波多野结衣一区二区三区av免费 | 国产精品久免费的黄网站 | 日韩欧美群交p片內射中文 | 精品少妇爆乳无码av无码专区 | 老熟妇乱子伦牲交视频 | 国产精品亚洲а∨无码播放麻豆 | 中文字幕色婷婷在线视频 | 国内少妇偷人精品视频免费 | 中国女人内谢69xxxxxa片 | 无码国产色欲xxxxx视频 | 国产精品自产拍在线观看 | 精品亚洲韩国一区二区三区 | 丁香啪啪综合成人亚洲 | 宝宝好涨水快流出来免费视频 | 中国女人内谢69xxxxxa片 | 色综合久久久无码中文字幕 | 精品夜夜澡人妻无码av蜜桃 | 日本熟妇大屁股人妻 | 亚洲自偷精品视频自拍 | 亚洲の无码国产の无码步美 | 国产深夜福利视频在线 | 性欧美疯狂xxxxbbbb | 国产精品久免费的黄网站 | 精品无码一区二区三区的天堂 | 精品熟女少妇av免费观看 | 日日夜夜撸啊撸 | 免费国产黄网站在线观看 | 精品亚洲成av人在线观看 | 内射欧美老妇wbb | 激情五月综合色婷婷一区二区 | 国产成人午夜福利在线播放 | 鲁鲁鲁爽爽爽在线视频观看 | 欧美人与物videos另类 | 欧美精品国产综合久久 | 清纯唯美经典一区二区 | 精品无人区无码乱码毛片国产 | 日产精品99久久久久久 | 无码国产色欲xxxxx视频 | 色综合久久中文娱乐网 | 成人欧美一区二区三区黑人 | 亚洲综合精品香蕉久久网 | 亚洲人亚洲人成电影网站色 | 激情爆乳一区二区三区 | 久久午夜夜伦鲁鲁片无码免费 | 午夜精品一区二区三区在线观看 | 欧美人与物videos另类 | 色综合久久中文娱乐网 | 亚洲国产一区二区三区在线观看 | 天干天干啦夜天干天2017 | 无码任你躁久久久久久久 | 日本大乳高潮视频在线观看 | 日韩视频 中文字幕 视频一区 | 无码吃奶揉捏奶头高潮视频 | 久久久成人毛片无码 | 午夜肉伦伦影院 | 精品无码成人片一区二区98 | 强奷人妻日本中文字幕 | 国产精品第一区揄拍无码 | 亚洲码国产精品高潮在线 | 国产精品久久国产精品99 | 亚洲伊人久久精品影院 | 国产超级va在线观看视频 | 欧美一区二区三区视频在线观看 | 精品国偷自产在线 | 亚洲理论电影在线观看 | 国产麻豆精品一区二区三区v视界 | 国产精品手机免费 | 久久精品丝袜高跟鞋 | 亚洲人成影院在线观看 | 亚洲国产成人av在线观看 | 午夜精品久久久久久久久 | 乱人伦人妻中文字幕无码久久网 | 天天躁夜夜躁狠狠是什么心态 | 亚洲一区二区三区香蕉 | 国产成人精品久久亚洲高清不卡 | 玩弄人妻少妇500系列视频 | 亚洲欧美精品aaaaaa片 | 少妇激情av一区二区 | aⅴ亚洲 日韩 色 图网站 播放 | 无码精品国产va在线观看dvd | 俺去俺来也在线www色官网 | 国产人妻精品一区二区三区不卡 | 激情爆乳一区二区三区 | 亚洲无人区午夜福利码高清完整版 | 小鲜肉自慰网站xnxx | 国产一区二区不卡老阿姨 | 亚洲国产精品久久久久久 | 日本护士毛茸茸高潮 | 无码人妻精品一区二区三区不卡 | 中文字幕乱妇无码av在线 | 领导边摸边吃奶边做爽在线观看 | 麻豆果冻传媒2021精品传媒一区下载 | 荫蒂添的好舒服视频囗交 | 日日摸日日碰夜夜爽av | 精品人妻人人做人人爽夜夜爽 | 欧美日韩综合一区二区三区 | 国产在线一区二区三区四区五区 | 无码一区二区三区在线观看 | 理论片87福利理论电影 | 中文字幕乱妇无码av在线 | 99国产精品白浆在线观看免费 | 亚洲一区二区三区在线观看网站 | 国产在线精品一区二区三区直播 | 中文字幕无码日韩欧毛 | 国产69精品久久久久app下载 | 国产又爽又猛又粗的视频a片 | 久久99热只有频精品8 | 国产真人无遮挡作爱免费视频 | 日韩av无码一区二区三区不卡 | 国产精品人人爽人人做我的可爱 | 亚洲综合另类小说色区 | 久久久国产一区二区三区 | 青草青草久热国产精品 | 中国女人内谢69xxxxxa片 | 亚洲成av人片在线观看无码不卡 | 亚洲精品无码人妻无码 | 丰满人妻一区二区三区免费视频 | 欧美 丝袜 自拍 制服 另类 | 免费观看黄网站 | 国产精品久久久久久亚洲影视内衣 | 国产亚洲人成a在线v网站 | 日日碰狠狠丁香久燥 | 亚洲国产精品无码久久久久高潮 | 亚洲欧美综合区丁香五月小说 | 久精品国产欧美亚洲色aⅴ大片 | 中文无码成人免费视频在线观看 | 欧美黑人巨大xxxxx | 亚洲人成网站色7799 | 强开小婷嫩苞又嫩又紧视频 | 野外少妇愉情中文字幕 | 国产精品美女久久久久av爽李琼 | 国产人妻人伦精品 | 国产电影无码午夜在线播放 | 天堂无码人妻精品一区二区三区 | 国产熟女一区二区三区四区五区 | 在线亚洲高清揄拍自拍一品区 | 综合激情五月综合激情五月激情1 | 国语精品一区二区三区 | 久久久久99精品成人片 | 377p欧洲日本亚洲大胆 | 欧美成人高清在线播放 | 久久久久久av无码免费看大片 | 久久久久se色偷偷亚洲精品av | 亚洲精品久久久久avwww潮水 | 亚洲精品一区国产 | 中文字幕亚洲情99在线 | 牲欲强的熟妇农村老妇女 | 久久精品国产精品国产精品污 | 亚洲一区二区三区在线观看网站 | 日本乱人伦片中文三区 | 精品乱子伦一区二区三区 | 麻豆蜜桃av蜜臀av色欲av | 国产麻豆精品精东影业av网站 | 久久国产精品偷任你爽任你 | 久久综合色之久久综合 | 四十如虎的丰满熟妇啪啪 | 久久综合狠狠综合久久综合88 | 老司机亚洲精品影院 | 九九久久精品国产免费看小说 | 亚洲va中文字幕无码久久不卡 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲中文字幕av在天堂 | 国产又粗又硬又大爽黄老大爷视 | 国产在线一区二区三区四区五区 | 国产精品无码永久免费888 | 成人一区二区免费视频 | 亚洲七七久久桃花影院 | 精品无码av一区二区三区 | 亚洲中文字幕乱码av波多ji | 国产乱人无码伦av在线a | 丝袜足控一区二区三区 | 99久久精品国产一区二区蜜芽 | 亚洲色欲色欲天天天www | 全黄性性激高免费视频 | 日本高清一区免费中文视频 | 国产成人无码区免费内射一片色欲 | 欧美乱妇无乱码大黄a片 | 国产精品18久久久久久麻辣 | 亚洲精品久久久久久久久久久 | 天堂а√在线中文在线 | 国产成人精品一区二区在线小狼 | 亚洲一区二区三区在线观看网站 | 久久久久se色偷偷亚洲精品av | 中文字幕人成乱码熟女app | 亚洲精品无码人妻无码 | 天堂亚洲免费视频 | 免费播放一区二区三区 | 国产成人无码av一区二区 | 色欲久久久天天天综合网精品 | 欧美zoozzooz性欧美 | 久久精品国产99精品亚洲 | 波多野结衣 黑人 | 99久久久国产精品无码免费 | 久久久久久a亚洲欧洲av冫 | 国产成人一区二区三区别 | 国产人妻久久精品二区三区老狼 | 亚洲国产精品毛片av不卡在线 | 久久精品女人的天堂av | 男女下面进入的视频免费午夜 | 免费人成网站视频在线观看 | 午夜理论片yy44880影院 | 色婷婷综合激情综在线播放 | 中文无码成人免费视频在线观看 | 亚洲一区二区三区含羞草 | 国产又粗又硬又大爽黄老大爷视 | 啦啦啦www在线观看免费视频 | 国精产品一品二品国精品69xx | 无码播放一区二区三区 | 久久精品人人做人人综合 | 一本无码人妻在中文字幕免费 | 国产午夜手机精彩视频 | 国产av人人夜夜澡人人爽麻豆 | 国产精品办公室沙发 | 一个人看的www免费视频在线观看 | 一个人看的www免费视频在线观看 | 狠狠噜狠狠狠狠丁香五月 | 丰满少妇弄高潮了www | 国产av人人夜夜澡人人爽麻豆 | 日本成熟视频免费视频 | av无码不卡在线观看免费 | 人人澡人摸人人添 | 亚洲 高清 成人 动漫 | 欧美日韩在线亚洲综合国产人 | 一本大道久久东京热无码av | 天天摸天天碰天天添 | 美女极度色诱视频国产 | 国内揄拍国内精品人妻 | 国产精品亚洲专区无码不卡 | 免费播放一区二区三区 | 人妻尝试又大又粗久久 | 亚洲成a人片在线观看日本 | 亚洲国产日韩a在线播放 | 高清无码午夜福利视频 | 5858s亚洲色大成网站www | 日本欧美一区二区三区乱码 | 白嫩日本少妇做爰 | 欧美精品免费观看二区 | 成人无码视频免费播放 | 人妻无码久久精品人妻 | 日本一本二本三区免费 | 亚洲无人区一区二区三区 | 扒开双腿吃奶呻吟做受视频 | 国产亚洲精品久久久久久久久动漫 | 牲交欧美兽交欧美 | 精品乱子伦一区二区三区 | 亚洲 激情 小说 另类 欧美 | 色老头在线一区二区三区 | 波多野结衣一区二区三区av免费 | 亚洲а∨天堂久久精品2021 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产情侣作爱视频免费观看 | 久久综合网欧美色妞网 | 久久久久久久人妻无码中文字幕爆 | 狠狠综合久久久久综合网 | 亚洲国产精品成人久久蜜臀 | 国产成人综合美国十次 | 久久亚洲中文字幕无码 | 日韩欧美中文字幕在线三区 | 亚洲国产一区二区三区在线观看 | 5858s亚洲色大成网站www | 综合激情五月综合激情五月激情1 | 一本久久a久久精品vr综合 | 中文字幕乱码亚洲无线三区 | 偷窥日本少妇撒尿chinese | 少妇被粗大的猛进出69影院 | 精品国产一区二区三区av 性色 | 欧美日韩久久久精品a片 | 免费观看又污又黄的网站 | 人妻中文无码久热丝袜 | 一本久道久久综合狠狠爱 | 东京热一精品无码av | 国产精品人妻一区二区三区四 | 久久精品人妻少妇一区二区三区 | 国产熟妇高潮叫床视频播放 | 亚洲国产成人av在线观看 | 天天燥日日燥 | 久久精品人妻少妇一区二区三区 | 国产精品亚洲五月天高清 | 亚欧洲精品在线视频免费观看 | 高潮喷水的毛片 | 国产精品国产自线拍免费软件 | 俄罗斯老熟妇色xxxx | 亚洲熟悉妇女xxx妇女av | 好爽又高潮了毛片免费下载 | 天干天干啦夜天干天2017 | 国产综合久久久久鬼色 | 亚洲成熟女人毛毛耸耸多 | 强辱丰满人妻hd中文字幕 | 无码av最新清无码专区吞精 | 日本乱偷人妻中文字幕 | 亚洲精品久久久久avwww潮水 | 奇米影视7777久久精品 | 精品久久久久久人妻无码中文字幕 | 免费国产成人高清在线观看网站 | 久久国内精品自在自线 | 国产综合在线观看 | 精品偷拍一区二区三区在线看 | 中文字幕乱码人妻二区三区 | 精品成人av一区二区三区 | 亚洲精品一区三区三区在线观看 | 牲交欧美兽交欧美 | 一本无码人妻在中文字幕免费 | 人妻与老人中文字幕 | 国产乱人伦偷精品视频 | 成人试看120秒体验区 | 国产激情精品一区二区三区 | 亚洲码国产精品高潮在线 | 一本久久伊人热热精品中文字幕 | 捆绑白丝粉色jk震动捧喷白浆 | 亚洲综合无码久久精品综合 | 成年美女黄网站色大免费视频 | 国产精品亚洲一区二区三区喷水 | 少妇被黑人到高潮喷出白浆 | 真人与拘做受免费视频 | 色 综合 欧美 亚洲 国产 | 一区二区三区乱码在线 | 欧洲 | 国产精品亚洲专区无码不卡 | 免费观看又污又黄的网站 | 精品久久久无码人妻字幂 | 爽爽影院免费观看 | 国产色精品久久人妻 | 国产精品毛片一区二区 | 国内少妇偷人精品视频免费 | 精品无码成人片一区二区98 | 成 人影片 免费观看 | 熟妇激情内射com | 人妻无码久久精品人妻 | 十八禁真人啪啪免费网站 | 狠狠噜狠狠狠狠丁香五月 | 亚洲人成影院在线无码按摩店 | 久久精品国产一区二区三区肥胖 | 丰满少妇弄高潮了www | 国产69精品久久久久app下载 | 国产9 9在线 | 中文 | 理论片87福利理论电影 | 亚洲成a人一区二区三区 | 天堂无码人妻精品一区二区三区 | 久激情内射婷内射蜜桃人妖 | 熟妇人妻无乱码中文字幕 | 亚洲成av人片天堂网无码】 | 国产精品内射视频免费 | 四虎国产精品一区二区 | 亚洲人成网站免费播放 | 午夜福利试看120秒体验区 | 日产精品99久久久久久 | 熟妇女人妻丰满少妇中文字幕 | 欧美猛少妇色xxxxx | 亚洲综合在线一区二区三区 | 中文字幕无码日韩专区 | 欧美精品免费观看二区 | 亚洲精品鲁一鲁一区二区三区 | 欧美国产日韩亚洲中文 | 亚洲中文字幕在线观看 | 国产精品沙发午睡系列 | 无套内谢老熟女 | 最近免费中文字幕中文高清百度 | 国产精品美女久久久网av | 日韩精品无码一区二区中文字幕 | 欧洲熟妇色 欧美 | 亚洲成a人片在线观看无码3d | 国产综合久久久久鬼色 | 在线观看国产一区二区三区 | 无码av最新清无码专区吞精 | 蜜臀aⅴ国产精品久久久国产老师 | 少妇厨房愉情理9仑片视频 | 久久亚洲精品中文字幕无男同 | 亚洲一区二区三区含羞草 | 亚洲熟妇色xxxxx欧美老妇 | 久久久中文久久久无码 | 亚洲精品鲁一鲁一区二区三区 | 国产成人综合色在线观看网站 | 成人无码视频在线观看网站 | 丰满少妇人妻久久久久久 | a国产一区二区免费入口 | 国产精品久久久 | 午夜福利试看120秒体验区 | 色欲人妻aaaaaaa无码 | 学生妹亚洲一区二区 | 77777熟女视频在线观看 а天堂中文在线官网 | 妺妺窝人体色www在线小说 | 特大黑人娇小亚洲女 | 欧洲极品少妇 | 成人免费视频在线观看 | 欧美35页视频在线观看 | 国产熟妇另类久久久久 | 夜夜影院未满十八勿进 | 久久综合香蕉国产蜜臀av | 免费国产成人高清在线观看网站 | 久久精品中文字幕大胸 | 亚洲国产av美女网站 | 久久zyz资源站无码中文动漫 | 国产精品igao视频网 | 色一情一乱一伦一视频免费看 | 亚洲精品久久久久久久久久久 | 人人爽人人澡人人人妻 | 国产午夜精品一区二区三区嫩草 | 亚洲高清偷拍一区二区三区 | 小泽玛莉亚一区二区视频在线 | 婷婷色婷婷开心五月四房播播 | 久久人人97超碰a片精品 | 麻豆精品国产精华精华液好用吗 | 疯狂三人交性欧美 | 日本一卡2卡3卡四卡精品网站 | 女人被男人爽到呻吟的视频 | 国产精品久久久久无码av色戒 | 熟妇女人妻丰满少妇中文字幕 | 国产综合久久久久鬼色 | 色婷婷综合中文久久一本 | 国产在线aaa片一区二区99 | 国产成人综合色在线观看网站 | 骚片av蜜桃精品一区 | 午夜精品久久久久久久久 | 国产做国产爱免费视频 | 亚洲欧美日韩综合久久久 | 成年美女黄网站色大免费视频 | 色老头在线一区二区三区 | 国产办公室秘书无码精品99 | 日韩av无码一区二区三区 | 青春草在线视频免费观看 | 久久国产劲爆∧v内射 | 色婷婷久久一区二区三区麻豆 | 精品一区二区三区波多野结衣 | 亚洲一区二区观看播放 | 漂亮人妻洗澡被公强 日日躁 | 日日躁夜夜躁狠狠躁 | 无码av岛国片在线播放 | 日本熟妇大屁股人妻 | 国产精品亚洲五月天高清 | 国产av剧情md精品麻豆 | 亚洲欧洲无卡二区视頻 | 强伦人妻一区二区三区视频18 | 一本大道久久东京热无码av | 午夜熟女插插xx免费视频 | 乱码午夜-极国产极内射 | 免费播放一区二区三区 | 久久99久久99精品中文字幕 | www成人国产高清内射 | 图片小说视频一区二区 | 亚洲欧美色中文字幕在线 | 熟妇人妻无乱码中文字幕 | 少妇太爽了在线观看 | 丝袜美腿亚洲一区二区 | 国内揄拍国内精品少妇国语 | 国产区女主播在线观看 | 东京热男人av天堂 | 国产人成高清在线视频99最全资源 | 国产疯狂伦交大片 | 97久久超碰中文字幕 | 免费无码肉片在线观看 | 亚洲一区二区三区四区 | 国产黄在线观看免费观看不卡 | 一本久久伊人热热精品中文字幕 | 波多野结衣乳巨码无在线观看 | 亚洲中文字幕久久无码 | 亚洲中文字幕在线无码一区二区 | 欧美刺激性大交 | 国产精品成人av在线观看 | 色老头在线一区二区三区 | 国内精品人妻无码久久久影院 | 国产麻豆精品精东影业av网站 | 无码精品人妻一区二区三区av | 在线精品国产一区二区三区 | 最新版天堂资源中文官网 | 一个人看的www免费视频在线观看 | 熟妇人妻无码xxx视频 | 精品少妇爆乳无码av无码专区 | 久久久www成人免费毛片 | 国产莉萝无码av在线播放 | 人人妻人人澡人人爽欧美一区 | 国产性生交xxxxx无码 | 精品久久综合1区2区3区激情 | 久久这里只有精品视频9 | 中文精品久久久久人妻不卡 | 老司机亚洲精品影院 | 性色欲情网站iwww九文堂 | 娇妻被黑人粗大高潮白浆 | 久久精品成人欧美大片 | 97久久精品无码一区二区 | 日日摸日日碰夜夜爽av | 免费无码一区二区三区蜜桃大 | 人妻有码中文字幕在线 | 在线精品国产一区二区三区 | 日韩人妻无码一区二区三区久久99 | 国产亚洲视频中文字幕97精品 | 亚洲国产成人av在线观看 | 亚洲人成网站免费播放 | 午夜精品一区二区三区的区别 | 亚洲va中文字幕无码久久不卡 | 精品无码一区二区三区爱欲 | 国产内射爽爽大片视频社区在线 | 免费播放一区二区三区 | 国产疯狂伦交大片 | 欧洲欧美人成视频在线 | 国产舌乚八伦偷品w中 | 成人一在线视频日韩国产 | 毛片内射-百度 | 无码国内精品人妻少妇 | 久久精品成人欧美大片 | 人人超人人超碰超国产 | 亚洲国产av精品一区二区蜜芽 | 久久亚洲国产成人精品性色 | 中文无码精品a∨在线观看不卡 | 日本高清一区免费中文视频 | 国产精品无码mv在线观看 | 精品日本一区二区三区在线观看 | 少妇被黑人到高潮喷出白浆 | 丁香花在线影院观看在线播放 | 特级做a爰片毛片免费69 | 内射爽无广熟女亚洲 | 亚洲一区二区三区含羞草 | 日本熟妇浓毛 | 国产成人精品必看 | 日本精品人妻无码免费大全 | 亚洲精品一区二区三区在线 | 亚洲精品综合五月久久小说 | 国产猛烈高潮尖叫视频免费 | 亚洲国产av精品一区二区蜜芽 | 色狠狠av一区二区三区 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲中文无码av永久不收费 | 国产在线精品一区二区高清不卡 | 永久免费观看国产裸体美女 | 国产午夜精品一区二区三区嫩草 | 精品一区二区三区无码免费视频 | 国产超碰人人爽人人做人人添 | 欧美国产日韩亚洲中文 | 婷婷综合久久中文字幕蜜桃三电影 | 免费人成在线观看网站 | 成人亚洲精品久久久久软件 | 国产精品久久久久久无码 | 成人无码精品1区2区3区免费看 | a国产一区二区免费入口 | 97精品人妻一区二区三区香蕉 | 国产精品嫩草久久久久 | 色婷婷香蕉在线一区二区 | 亚洲精品www久久久 | 少妇被粗大的猛进出69影院 | 久久99精品久久久久久动态图 | 国产精品无码一区二区三区不卡 | 丰满人妻精品国产99aⅴ | 一本大道久久东京热无码av | 日本大香伊一区二区三区 | 黑森林福利视频导航 | 亚洲日韩av一区二区三区四区 | 夜夜夜高潮夜夜爽夜夜爰爰 | 捆绑白丝粉色jk震动捧喷白浆 | 激情内射日本一区二区三区 | 国产精品永久免费视频 | 日日碰狠狠丁香久燥 | 国产精品理论片在线观看 | 波多野结衣aⅴ在线 | 久久精品成人欧美大片 | 在线观看欧美一区二区三区 | 国产亚洲tv在线观看 | 亚洲成av人片在线观看无码不卡 | 亚洲第一网站男人都懂 | 日韩成人一区二区三区在线观看 | 亚洲精品中文字幕久久久久 | 午夜精品久久久内射近拍高清 | 国产精品亚洲一区二区三区喷水 | 成人欧美一区二区三区黑人 | 精品国产青草久久久久福利 | 国内少妇偷人精品视频免费 | 一本色道久久综合亚洲精品不卡 | 久久国内精品自在自线 | 国产凸凹视频一区二区 | 日韩精品久久久肉伦网站 | 欧美 日韩 亚洲 在线 | 国产又粗又硬又大爽黄老大爷视 | 免费无码av一区二区 | 大乳丰满人妻中文字幕日本 | 亚洲成a人一区二区三区 | 麻豆av传媒蜜桃天美传媒 | 中文字幕亚洲情99在线 | 日本www一道久久久免费榴莲 | 丁香啪啪综合成人亚洲 | 亚洲熟妇色xxxxx亚洲 | 婷婷丁香六月激情综合啪 | 国产另类ts人妖一区二区 | 一本大道久久东京热无码av | 377p欧洲日本亚洲大胆 | 日本丰满护士爆乳xxxx | 99久久人妻精品免费二区 | 欧美精品免费观看二区 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产99久久精品一区二区 | 精品厕所偷拍各类美女tp嘘嘘 | 天天摸天天透天天添 | 麻豆精品国产精华精华液好用吗 | 131美女爱做视频 | 精品久久久无码人妻字幂 | 国产色视频一区二区三区 | 国产真实夫妇视频 | 精品无码成人片一区二区98 | 欧美激情内射喷水高潮 | av人摸人人人澡人人超碰下载 | 久久精品中文字幕一区 | 国产精品福利视频导航 | 国产两女互慰高潮视频在线观看 | 国产香蕉尹人综合在线观看 | 午夜无码区在线观看 | 国产人妻精品午夜福利免费 | 丰满肥臀大屁股熟妇激情视频 | 扒开双腿吃奶呻吟做受视频 | 麻豆国产97在线 | 欧洲 | 少妇无码av无码专区在线观看 | 中文精品无码中文字幕无码专区 | 精品乱子伦一区二区三区 | 女人色极品影院 | 人人爽人人爽人人片av亚洲 | 久久久久国色av免费观看性色 | 内射巨臀欧美在线视频 | 亚洲 欧美 激情 小说 另类 | 日日碰狠狠躁久久躁蜜桃 | 欧洲美熟女乱又伦 | 欧美丰满少妇xxxx性 | 久久午夜无码鲁丝片秋霞 | 亚洲午夜无码久久 | 国产精品爱久久久久久久 | 久久久久av无码免费网 | 国产内射老熟女aaaa | 亚洲日韩av片在线观看 | 久久人人爽人人爽人人片ⅴ | 丰满妇女强制高潮18xxxx | 水蜜桃色314在线观看 | 免费无码一区二区三区蜜桃大 | 欧美性生交活xxxxxdddd | 国产成人精品视频ⅴa片软件竹菊 | 三级4级全黄60分钟 | 日韩亚洲欧美中文高清在线 | 少妇无码一区二区二三区 | 欧美日本日韩 | 沈阳熟女露脸对白视频 | 午夜成人1000部免费视频 | 免费观看的无遮挡av | 麻豆人妻少妇精品无码专区 | 国产无遮挡吃胸膜奶免费看 | 国产在线精品一区二区高清不卡 | 丰满人妻一区二区三区免费视频 | 久久精品女人天堂av免费观看 | 国产人妻人伦精品1国产丝袜 | 2020久久香蕉国产线看观看 | 欧美日韩人成综合在线播放 | 天天拍夜夜添久久精品 | 免费看男女做好爽好硬视频 | 狂野欧美激情性xxxx | 少妇无码av无码专区在线观看 | 乱人伦人妻中文字幕无码久久网 | 国产精品久久久久久无码 | 乱人伦人妻中文字幕无码 | 人妻插b视频一区二区三区 | 波多野结衣高清一区二区三区 | 久久久中文久久久无码 | 亚欧洲精品在线视频免费观看 | 性欧美牲交在线视频 | 成人性做爰aaa片免费看不忠 | 日本一卡二卡不卡视频查询 | 无人区乱码一区二区三区 | 国产超级va在线观看视频 | 人人妻人人澡人人爽欧美一区 | 欧美成人免费全部网站 | 欧美zoozzooz性欧美 | 精品久久久无码人妻字幂 | 成在人线av无码免观看麻豆 | 国产av一区二区精品久久凹凸 | 亚洲小说图区综合在线 | a在线观看免费网站大全 | 免费乱码人妻系列无码专区 | 亚洲成av人片在线观看无码不卡 | 色欲综合久久中文字幕网 | 欧美人妻一区二区三区 | 亚洲精品成人福利网站 | 亚洲精品国产精品乱码视色 | 亚洲精品一区二区三区婷婷月 | 亚洲一区二区三区在线观看网站 | 国语精品一区二区三区 | 少妇激情av一区二区 | 欧美黑人性暴力猛交喷水 | 久久99热只有频精品8 | 国产无遮挡又黄又爽免费视频 | 国产 浪潮av性色四虎 | 亚洲精品一区二区三区四区五区 | 亚洲国产精品无码久久久久高潮 | 漂亮人妻洗澡被公强 日日躁 | 亚洲日韩中文字幕在线播放 | 久久天天躁狠狠躁夜夜免费观看 | 国产精品亚洲五月天高清 | 无码国模国产在线观看 | 欧美精品免费观看二区 | 女人高潮内射99精品 | 亚洲日本一区二区三区在线 | 性啪啪chinese东北女人 | 俺去俺来也www色官网 | 性欧美牲交在线视频 | 国内精品久久毛片一区二区 | 女人被男人爽到呻吟的视频 | 老子影院午夜精品无码 | 精品欧美一区二区三区久久久 | 领导边摸边吃奶边做爽在线观看 | 色情久久久av熟女人妻网站 | 欧美日韩久久久精品a片 | 免费视频欧美无人区码 | 日日摸夜夜摸狠狠摸婷婷 | 少妇无码av无码专区在线观看 | 国产亚洲精品久久久ai换 | 青草视频在线播放 | 荫蒂添的好舒服视频囗交 | 思思久久99热只有频精品66 | 狠狠色噜噜狠狠狠7777奇米 | 成人亚洲精品久久久久 | 人人爽人人爽人人片av亚洲 | 国产香蕉尹人视频在线 | 精品久久综合1区2区3区激情 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国内少妇偷人精品视频 | 婷婷五月综合激情中文字幕 | 国产精品多人p群无码 | 国产三级久久久精品麻豆三级 | 欧美激情一区二区三区成人 | 乱码av麻豆丝袜熟女系列 | 日韩人妻无码一区二区三区久久99 | 色综合久久久无码网中文 | 日本高清一区免费中文视频 | 国产国语老龄妇女a片 | 麻豆成人精品国产免费 | 久久人人97超碰a片精品 | 欧美大屁股xxxxhd黑色 | 好男人社区资源 | 欧美激情综合亚洲一二区 | 欧美日韩视频无码一区二区三 | 亚洲国产精品一区二区美利坚 | 一个人看的视频www在线 | 成人女人看片免费视频放人 | 女高中生第一次破苞av | 精品国产精品久久一区免费式 | √天堂中文官网8在线 | www成人国产高清内射 | 欧美大屁股xxxxhd黑色 | 国产成人人人97超碰超爽8 | 亚洲а∨天堂久久精品2021 | 亚洲精品综合一区二区三区在线 | 久久精品中文闷骚内射 | 麻豆国产97在线 | 欧洲 | 18禁黄网站男男禁片免费观看 | 国产精品美女久久久网av | 久久精品国产99久久6动漫 | 精品亚洲成av人在线观看 | 亚洲国产成人av在线观看 | 国产人妻精品一区二区三区 | 久久久www成人免费毛片 | 老熟妇仑乱视频一区二区 | 欧美野外疯狂做受xxxx高潮 | 久久久久亚洲精品中文字幕 | 一本色道久久综合狠狠躁 | 天天躁夜夜躁狠狠是什么心态 | 乱人伦人妻中文字幕无码久久网 | 国产免费观看黄av片 | 性生交大片免费看l | 久久精品视频在线看15 | 国产xxx69麻豆国语对白 | 亚洲の无码国产の无码步美 | 亚洲精品久久久久中文第一幕 | 久久综合狠狠综合久久综合88 | 亚洲男人av天堂午夜在 | 久久国产36精品色熟妇 | 精品人妻人人做人人爽夜夜爽 | 对白脏话肉麻粗话av | 一二三四社区在线中文视频 | 国产精品人人妻人人爽 | 性色av无码免费一区二区三区 | 亚洲 另类 在线 欧美 制服 | 日韩av无码一区二区三区不卡 | 亚洲人成人无码网www国产 | 国产成人无码一二三区视频 | 国产高潮视频在线观看 | 天天爽夜夜爽夜夜爽 | 成在人线av无码免费 | 亚洲日韩av一区二区三区四区 | 国产网红无码精品视频 | 日本xxxx色视频在线观看免费 | 亚洲伊人久久精品影院 | 久久久久久久人妻无码中文字幕爆 | 亚洲 a v无 码免 费 成 人 a v | 国产va免费精品观看 | 久久aⅴ免费观看 | 99久久久无码国产精品免费 | 国产成人精品必看 | 国产在线一区二区三区四区五区 | 中文字幕色婷婷在线视频 | 国产特级毛片aaaaaa高潮流水 | 西西人体www44rt大胆高清 | 香蕉久久久久久av成人 | 日韩精品a片一区二区三区妖精 | 日本高清一区免费中文视频 | 日本丰满护士爆乳xxxx | 亚洲中文无码av永久不收费 | 国产三级精品三级男人的天堂 | 精品久久8x国产免费观看 | 99久久亚洲精品无码毛片 | 亚洲国产综合无码一区 | 天堂亚洲2017在线观看 | 黑人巨大精品欧美黑寡妇 | 久久人人爽人人爽人人片av高清 | 国产香蕉尹人综合在线观看 | 天天躁夜夜躁狠狠是什么心态 | 国产又爽又黄又刺激的视频 | 国产电影无码午夜在线播放 | 天堂亚洲2017在线观看 | 久久久精品成人免费观看 | 男人的天堂2018无码 | 熟女俱乐部五十路六十路av | 天天av天天av天天透 | 国产精品香蕉在线观看 | 日本肉体xxxx裸交 | 无码一区二区三区在线观看 | 日本一卡2卡3卡四卡精品网站 | 中文无码伦av中文字幕 | 377p欧洲日本亚洲大胆 | 国产激情艳情在线看视频 | 成人无码精品一区二区三区 | 中文字幕乱码人妻无码久久 | 欧美日韩人成综合在线播放 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产人成高清在线视频99最全资源 | 国产手机在线αⅴ片无码观看 | 免费乱码人妻系列无码专区 | 精品无码国产一区二区三区av | 免费无码午夜福利片69 | 国产精品亚洲综合色区韩国 | 欧美午夜特黄aaaaaa片 | 久久久久成人精品免费播放动漫 | 青青久在线视频免费观看 | 高清无码午夜福利视频 | 香蕉久久久久久av成人 | 国产亚洲精品久久久久久久 | 夜夜躁日日躁狠狠久久av | 亚洲色大成网站www | 人妻无码αv中文字幕久久琪琪布 | 国产精品久久国产精品99 | 好男人社区资源 | 99久久无码一区人妻 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 亚洲精品成人av在线 | 伊人久久大香线蕉亚洲 | 国产女主播喷水视频在线观看 | 未满小14洗澡无码视频网站 | 国产成人无码av一区二区 | 国产人妖乱国产精品人妖 | 久久亚洲中文字幕精品一区 | 婷婷综合久久中文字幕蜜桃三电影 | 久久人人97超碰a片精品 | 国产办公室秘书无码精品99 | 色综合久久久无码中文字幕 | 欧美日韩久久久精品a片 | 亚洲色欲色欲天天天www | 久久精品一区二区三区四区 | 欧美亚洲国产一区二区三区 | 国产精品久久福利网站 | 久久99精品国产.久久久久 | 精品欧美一区二区三区久久久 | 久久国产自偷自偷免费一区调 | 欧美野外疯狂做受xxxx高潮 | 人人爽人人澡人人高潮 | 久久天天躁狠狠躁夜夜免费观看 | 人人澡人人妻人人爽人人蜜桃 | 国产亚洲精品久久久ai换 | 国产欧美精品一区二区三区 | 色综合久久中文娱乐网 | 内射老妇bbwx0c0ck | 未满小14洗澡无码视频网站 | 国产精品人人爽人人做我的可爱 | 无码福利日韩神码福利片 | 5858s亚洲色大成网站www | 国产人妻精品一区二区三区 | 强辱丰满人妻hd中文字幕 | 国产精品欧美成人 | 超碰97人人做人人爱少妇 | 天堂久久天堂av色综合 | 狠狠色欧美亚洲狠狠色www | 国产美女精品一区二区三区 | 午夜不卡av免费 一本久久a久久精品vr综合 | 97色伦图片97综合影院 | 久久久中文久久久无码 | 国产激情艳情在线看视频 | 成人aaa片一区国产精品 | 国产sm调教视频在线观看 | 日韩亚洲欧美精品综合 | 色欲av亚洲一区无码少妇 | 国产精品久久久午夜夜伦鲁鲁 | 日本一区二区三区免费高清 | 亚洲成av人片在线观看无码不卡 | 日本成熟视频免费视频 | 中文字幕日韩精品一区二区三区 | 福利一区二区三区视频在线观看 | 亚洲成av人在线观看网址 | 无码人妻出轨黑人中文字幕 | 成人一在线视频日韩国产 | 国产免费久久久久久无码 | 中文字幕中文有码在线 | 十八禁视频网站在线观看 | 色狠狠av一区二区三区 | 国产超碰人人爽人人做人人添 | 久久人人爽人人爽人人片av高清 | 在线精品国产一区二区三区 | 一本色道婷婷久久欧美 | 午夜免费福利小电影 | 性欧美牲交xxxxx视频 | 久久综合给合久久狠狠狠97色 | 无码毛片视频一区二区本码 | 5858s亚洲色大成网站www | 中国女人内谢69xxxxxa片 | 欧美精品无码一区二区三区 | 精品国产麻豆免费人成网站 | 精品国产一区二区三区四区在线看 | 精品成人av一区二区三区 | 国产免费久久精品国产传媒 | 国内精品一区二区三区不卡 | 扒开双腿疯狂进出爽爽爽视频 | 婷婷五月综合激情中文字幕 | 亚洲成av人在线观看网址 | 国产激情综合五月久久 | 人妻少妇精品无码专区二区 | 两性色午夜视频免费播放 | 亚洲精品综合一区二区三区在线 | 国产色视频一区二区三区 | 色欲av亚洲一区无码少妇 | 熟女体下毛毛黑森林 | 男女性色大片免费网站 | 国内精品久久久久久中文字幕 | 久久天天躁夜夜躁狠狠 | 粉嫩少妇内射浓精videos | 性色欲网站人妻丰满中文久久不卡 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲高清偷拍一区二区三区 | 欧美人与牲动交xxxx | 国产精品视频免费播放 | 丰满少妇弄高潮了www | 国产成人无码区免费内射一片色欲 | 亚洲国精产品一二二线 | 黑人巨大精品欧美一区二区 | 老熟女重囗味hdxx69 | 亚洲一区二区三区播放 | 丰满护士巨好爽好大乳 | 国产黄在线观看免费观看不卡 | 在线a亚洲视频播放在线观看 | 日韩人妻少妇一区二区三区 | 国语自产偷拍精品视频偷 | 日韩av激情在线观看 | 国产人妻精品一区二区三区 | 国内少妇偷人精品视频免费 | 亚洲色欲色欲欲www在线 | 中国女人内谢69xxxxxa片 | 亚洲呦女专区 | 色婷婷综合中文久久一本 | 无套内谢老熟女 | 国产色在线 | 国产 | 亚洲乱码国产乱码精品精 | 男人扒开女人内裤强吻桶进去 | 日韩成人一区二区三区在线观看 | 国产成人精品优优av | 精品无人国产偷自产在线 | 色欲久久久天天天综合网精品 | 亚洲天堂2017无码中文 | 国产成人无码区免费内射一片色欲 | 亚洲日本在线电影 | 精品欧美一区二区三区久久久 | 日韩人妻无码中文字幕视频 | 欧洲熟妇精品视频 | 沈阳熟女露脸对白视频 | 欧美阿v高清资源不卡在线播放 | 国产av无码专区亚洲awww | 国产精品国产自线拍免费软件 | 亚洲国产精品一区二区美利坚 | 精品久久8x国产免费观看 | 国产精品久久福利网站 | 4hu四虎永久在线观看 | 亚洲一区二区三区含羞草 | 中文字幕无码免费久久9一区9 | 天堂久久天堂av色综合 | 大肉大捧一进一出好爽视频 | 亚洲综合伊人久久大杳蕉 | 激情五月综合色婷婷一区二区 | 老熟女重囗味hdxx69 | 国产真实乱对白精彩久久 | 亚洲最大成人网站 | 丰满护士巨好爽好大乳 | 亚洲精品国产a久久久久久 | 激情综合激情五月俺也去 | 人妻熟女一区 | 久精品国产欧美亚洲色aⅴ大片 | 国产在线aaa片一区二区99 | 老司机亚洲精品影院 | 亚洲自偷精品视频自拍 | 亚洲 欧美 激情 小说 另类 | 久久精品国产精品国产精品污 | 欧美精品无码一区二区三区 | 成 人影片 免费观看 | av小次郎收藏 | 在线播放无码字幕亚洲 | 熟女少妇人妻中文字幕 | 又色又爽又黄的美女裸体网站 | 成熟女人特级毛片www免费 | 亚洲中文字幕久久无码 | 久久精品人人做人人综合 | 国产一区二区三区日韩精品 | 少妇性俱乐部纵欲狂欢电影 | 久久久久亚洲精品男人的天堂 | 色偷偷人人澡人人爽人人模 | 国产绳艺sm调教室论坛 | 亚洲男人av香蕉爽爽爽爽 | 亚洲乱码日产精品bd | 久久久亚洲欧洲日产国码αv | 性欧美大战久久久久久久 | 特黄特色大片免费播放器图片 | 国产口爆吞精在线视频 | 中国女人内谢69xxxx | 女人被男人爽到呻吟的视频 | 亚洲精品一区二区三区在线 | 高潮毛片无遮挡高清免费 | 午夜精品一区二区三区在线观看 | 亚洲爆乳精品无码一区二区三区 | 四虎影视成人永久免费观看视频 | 丝袜 中出 制服 人妻 美腿 | 国产97人人超碰caoprom | av香港经典三级级 在线 | 狠狠色欧美亚洲狠狠色www | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 成 人 网 站国产免费观看 | 亚洲欧美日韩国产精品一区二区 | 乱中年女人伦av三区 | 欧美放荡的少妇 | 狠狠噜狠狠狠狠丁香五月 | 99精品无人区乱码1区2区3区 | 色综合久久网 | 日日碰狠狠躁久久躁蜜桃 | 国产成人精品必看 | 麻豆国产人妻欲求不满谁演的 | 亚洲精品国产第一综合99久久 | 麻豆国产丝袜白领秘书在线观看 | 国产黑色丝袜在线播放 | 亚洲日韩一区二区三区 | 乌克兰少妇xxxx做受 | 欧美人与物videos另类 | 亚洲日韩一区二区 | 3d动漫精品啪啪一区二区中 | 国产精品无码久久av | 亚洲欧美综合区丁香五月小说 | 51国偷自产一区二区三区 | 中文字幕无码人妻少妇免费 | 精品少妇爆乳无码av无码专区 | 国产成人无码a区在线观看视频app | 欧美性猛交内射兽交老熟妇 | 中文字幕无码视频专区 | 4hu四虎永久在线观看 | 一本精品99久久精品77 | 久久99精品久久久久婷婷 | 奇米影视7777久久精品 | 人人澡人人妻人人爽人人蜜桃 | 天天av天天av天天透 | 国产亚洲精品精品国产亚洲综合 | 国产又爽又猛又粗的视频a片 | 无码av免费一区二区三区试看 | 欧美精品国产综合久久 | 性生交片免费无码看人 | 精品无码一区二区三区的天堂 | 成人性做爰aaa片免费看不忠 | 久久亚洲日韩精品一区二区三区 | 久久人人爽人人爽人人片av高清 | 中文字幕乱码中文乱码51精品 | 伊人久久大香线蕉午夜 | 色狠狠av一区二区三区 | 亚洲精品国产精品乱码不卡 | 久久久久久久人妻无码中文字幕爆 | 欧美成人家庭影院 | 中文字幕无码乱人伦 | 亚洲成色在线综合网站 | 成人无码精品1区2区3区免费看 | 中文字幕av无码一区二区三区电影 | 99久久精品日本一区二区免费 | 成人免费视频在线观看 | 色综合天天综合狠狠爱 | 日本一区二区三区免费播放 | 骚片av蜜桃精品一区 | 亚洲色欲久久久综合网东京热 | 国内精品一区二区三区不卡 | 亚洲精品综合一区二区三区在线 | 999久久久国产精品消防器材 | 久久97精品久久久久久久不卡 | 久久国产自偷自偷免费一区调 | 草草网站影院白丝内射 | 久久精品国产日本波多野结衣 | 国产香蕉尹人视频在线 | 国产成人精品必看 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 一本大道伊人av久久综合 | 无码国产乱人伦偷精品视频 | 欧美刺激性大交 | 久精品国产欧美亚洲色aⅴ大片 | 99久久无码一区人妻 | 国产黄在线观看免费观看不卡 | 亚洲成av人综合在线观看 | 久久久久免费看成人影片 | 免费播放一区二区三区 | 中文字幕久久久久人妻 | 日日碰狠狠丁香久燥 | 久久zyz资源站无码中文动漫 | 国产亚洲精品久久久闺蜜 | 亚洲精品国产品国语在线观看 | 亚洲一区二区观看播放 | 蜜臀av无码人妻精品 | 亚洲欧洲日本综合aⅴ在线 | 日欧一片内射va在线影院 | www国产亚洲精品久久久日本 | 3d动漫精品啪啪一区二区中 | 内射老妇bbwx0c0ck | 无遮无挡爽爽免费视频 | 久久99精品国产麻豆蜜芽 | 最新国产乱人伦偷精品免费网站 | 中文亚洲成a人片在线观看 | 特黄特色大片免费播放器图片 | 久久天天躁狠狠躁夜夜免费观看 | 在线播放亚洲第一字幕 | 欧美乱妇无乱码大黄a片 | 国内精品一区二区三区不卡 | 久久国产精品萌白酱免费 | 亚洲精品一区三区三区在线观看 | 日韩人妻系列无码专区 | 东京一本一道一二三区 | 亚洲男女内射在线播放 | 岛国片人妻三上悠亚 | 国产精品内射视频免费 | 欧美亚洲国产一区二区三区 | 精品国精品国产自在久国产87 | 日韩精品无码一区二区中文字幕 | 日日躁夜夜躁狠狠躁 | 精品无人区无码乱码毛片国产 | 又紧又大又爽精品一区二区 | 亚洲人成网站在线播放942 | 东京一本一道一二三区 | 久久精品人妻少妇一区二区三区 | 色噜噜亚洲男人的天堂 | 午夜福利电影 | 免费乱码人妻系列无码专区 | 久久久精品国产sm最大网站 | 人妻互换免费中文字幕 | 国产人妻精品午夜福利免费 | 亚洲无人区午夜福利码高清完整版 | 无码人妻少妇伦在线电影 | 日日摸天天摸爽爽狠狠97 | 精品 日韩 国产 欧美 视频 | 99精品视频在线观看免费 | 国产精品-区区久久久狼 | 日本护士xxxxhd少妇 | 在线精品国产一区二区三区 | 中文字幕久久久久人妻 | 欧美高清在线精品一区 | 水蜜桃色314在线观看 | 精品久久久久香蕉网 | 黑森林福利视频导航 | 国产xxx69麻豆国语对白 | 一个人免费观看的www视频 | 在线欧美精品一区二区三区 | 东京一本一道一二三区 | 98国产精品综合一区二区三区 | aa片在线观看视频在线播放 | 免费国产黄网站在线观看 | 免费人成在线视频无码 | 婷婷丁香五月天综合东京热 | 亚洲色偷偷男人的天堂 | 中文字幕乱码亚洲无线三区 | 欧美激情一区二区三区成人 | 中文字幕无码免费久久99 | 亚洲欧美国产精品久久 | 日本又色又爽又黄的a片18禁 | 四虎4hu永久免费 | 国产内射爽爽大片视频社区在线 | 熟女少妇人妻中文字幕 | 亚洲人成网站色7799 | 成年美女黄网站色大免费全看 | 午夜无码人妻av大片色欲 | 2020久久超碰国产精品最新 | 亚洲s色大片在线观看 | 67194成是人免费无码 | 伊人久久大香线蕉av一区二区 | 国内揄拍国内精品人妻 | 三级4级全黄60分钟 | 狠狠躁日日躁夜夜躁2020 | 欧洲美熟女乱又伦 | 清纯唯美经典一区二区 | 色综合久久网 | 亚洲国产精品久久人人爱 | 人妻尝试又大又粗久久 | 在线亚洲高清揄拍自拍一品区 | 人妻少妇精品无码专区二区 | 在线精品国产一区二区三区 | 国产精品99久久精品爆乳 | 野外少妇愉情中文字幕 | 欧美熟妇另类久久久久久不卡 | 99er热精品视频 | 国产精品嫩草久久久久 | 亚洲国精产品一二二线 | 18黄暴禁片在线观看 | 久久久精品国产sm最大网站 | 色诱久久久久综合网ywww | 国产精华av午夜在线观看 | 九九在线中文字幕无码 | 久久久久久av无码免费看大片 | 欧美自拍另类欧美综合图片区 | 福利一区二区三区视频在线观看 | 少妇邻居内射在线 | 亚洲精品久久久久avwww潮水 | 久久97精品久久久久久久不卡 | 国内精品九九久久久精品 | 日本一区二区三区免费高清 | 乱人伦人妻中文字幕无码久久网 | 欧美日韩人成综合在线播放 | 欧美野外疯狂做受xxxx高潮 | 欧美自拍另类欧美综合图片区 | 亚洲综合无码一区二区三区 | 亚洲天堂2017无码中文 | 欧美激情内射喷水高潮 | 性色欲网站人妻丰满中文久久不卡 | 久久午夜无码鲁丝片秋霞 | 亚洲国产精品久久久天堂 | 婷婷丁香六月激情综合啪 | 亚洲精品成人福利网站 | aⅴ亚洲 日韩 色 图网站 播放 | 97精品国产97久久久久久免费 | 精品人妻中文字幕有码在线 | 人妻插b视频一区二区三区 | 欧洲熟妇精品视频 | 人人澡人摸人人添 | 久久久精品欧美一区二区免费 | 5858s亚洲色大成网站www | 国产精品对白交换视频 | 亚洲gv猛男gv无码男同 | 久久99精品久久久久婷婷 | 亚洲小说图区综合在线 | 国内精品久久久久久中文字幕 | 国产真人无遮挡作爱免费视频 | 动漫av一区二区在线观看 | 四虎4hu永久免费 | 无码免费一区二区三区 | 亚洲热妇无码av在线播放 | 国产欧美精品一区二区三区 | 麻豆精产国品 | 荫蒂被男人添的好舒服爽免费视频 | 久久精品人人做人人综合 | 国产精品久久久av久久久 | 亚洲综合另类小说色区 | 国产精品第一国产精品 | 亚洲区小说区激情区图片区 | 俺去俺来也www色官网 | 国产亚洲日韩欧美另类第八页 | 九九在线中文字幕无码 | 97色伦图片97综合影院 | 成人欧美一区二区三区黑人免费 | 男女猛烈xx00免费视频试看 | 一本加勒比波多野结衣 | 伊人久久大香线蕉av一区二区 | 国产亚洲精品精品国产亚洲综合 | 美女张开腿让人桶 | 久久国产精品_国产精品 | 人妻插b视频一区二区三区 | 国产精品高潮呻吟av久久4虎 | 全球成人中文在线 | 亚洲一区二区三区偷拍女厕 | 国产特级毛片aaaaaa高潮流水 | 初尝人妻少妇中文字幕 | 国产av无码专区亚洲awww | 亚洲中文字幕va福利 | 国产精品亚洲一区二区三区喷水 | 国产色在线 | 国产 | 中文字幕无线码 | 亚洲精品综合一区二区三区在线 | 亚洲成a人一区二区三区 | 熟女体下毛毛黑森林 | 亚洲日本va中文字幕 | 国产成人精品久久亚洲高清不卡 | 国内丰满熟女出轨videos | 亚洲欧美中文字幕5发布 | 中文精品无码中文字幕无码专区 | 亚洲 日韩 欧美 成人 在线观看 | 乌克兰少妇性做爰 | 人人妻人人澡人人爽人人精品浪潮 | 国产真实夫妇视频 | www国产亚洲精品久久网站 | 国产成人无码av片在线观看不卡 | 国内精品久久久久久中文字幕 | 性做久久久久久久免费看 | av在线亚洲欧洲日产一区二区 | 网友自拍区视频精品 | 无套内射视频囯产 | av无码久久久久不卡免费网站 | 女高中生第一次破苞av | 两性色午夜视频免费播放 | 丝袜足控一区二区三区 | 亚洲一区二区三区偷拍女厕 | 两性色午夜免费视频 | aⅴ在线视频男人的天堂 | 国产欧美亚洲精品a | 国产九九九九九九九a片 | 日韩欧美中文字幕公布 | 久久国产劲爆∧v内射 | 极品尤物被啪到呻吟喷水 | 亚洲熟悉妇女xxx妇女av | 扒开双腿疯狂进出爽爽爽视频 | 亚洲综合久久一区二区 | 日本精品少妇一区二区三区 | 亚洲欧洲日本无在线码 | 精品久久久久久人妻无码中文字幕 | 丰满岳乱妇在线观看中字无码 | 国产色精品久久人妻 | 久久99国产综合精品 | 国产欧美精品一区二区三区 | 又粗又大又硬又长又爽 | 国内精品人妻无码久久久影院蜜桃 | www国产亚洲精品久久久日本 | 日本乱偷人妻中文字幕 | 久久久久久久女国产乱让韩 | 性开放的女人aaa片 | 最近免费中文字幕中文高清百度 | 久久99国产综合精品 | 又湿又紧又大又爽a视频国产 | 无码午夜成人1000部免费视频 | 亚洲男人av天堂午夜在 | 亚洲精品国产第一综合99久久 | 国产精品内射视频免费 | 日韩精品久久久肉伦网站 | 亚洲日韩乱码中文无码蜜桃臀网站 | 欧美成人高清在线播放 | 久久久久久久久蜜桃 | 日本又色又爽又黄的a片18禁 | 国产成人无码av在线影院 | 免费国产黄网站在线观看 | 小sao货水好多真紧h无码视频 | 性史性农村dvd毛片 | 成人精品天堂一区二区三区 | 日本一区二区三区免费播放 | av小次郎收藏 | 久久99精品久久久久婷婷 | 色窝窝无码一区二区三区色欲 | 日本又色又爽又黄的a片18禁 | 377p欧洲日本亚洲大胆 | 曰韩无码二三区中文字幕 | 伊人久久大香线蕉午夜 | 欧美激情内射喷水高潮 | 色一情一乱一伦一视频免费看 | 国产片av国语在线观看 | 亚洲va欧美va天堂v国产综合 | 波多野结衣一区二区三区av免费 | 又色又爽又黄的美女裸体网站 | 亚拍精品一区二区三区探花 | 亚洲无人区一区二区三区 | 久久午夜夜伦鲁鲁片无码免费 | 日韩av激情在线观看 | 国产香蕉尹人综合在线观看 | 久久久婷婷五月亚洲97号色 | 日韩精品久久久肉伦网站 | 蜜桃视频插满18在线观看 | 在线欧美精品一区二区三区 | 西西人体www44rt大胆高清 | 999久久久国产精品消防器材 | 亚洲第一网站男人都懂 | 国产九九九九九九九a片 | 国产精品人妻一区二区三区四 | 少妇无码一区二区二三区 | 国产午夜无码视频在线观看 | 色偷偷人人澡人人爽人人模 | 麻花豆传媒剧国产免费mv在线 | 国产口爆吞精在线视频 | 天天av天天av天天透 | 国产精品无码永久免费888 | 老熟女重囗味hdxx69 | 亚洲欧美日韩成人高清在线一区 | 精品久久久久久人妻无码中文字幕 | 99re在线播放 | 国产精品久久久久久久9999 | 亚洲日本在线电影 | 99久久亚洲精品无码毛片 | 国产精品高潮呻吟av久久 | 中文字幕无线码免费人妻 | 东北女人啪啪对白 | 377p欧洲日本亚洲大胆 | 久久99精品久久久久婷婷 | 亚洲日韩av一区二区三区四区 | 日韩成人一区二区三区在线观看 | 久精品国产欧美亚洲色aⅴ大片 | 久久久久免费精品国产 | 亚洲热妇无码av在线播放 | 国产深夜福利视频在线 | 国产精品久久久久久久9999 | 欧美人与善在线com | 男人和女人高潮免费网站 | 秋霞特色aa大片 | 高清国产亚洲精品自在久久 | 精品久久久中文字幕人妻 | 双乳奶水饱满少妇呻吟 | 亚洲人亚洲人成电影网站色 | 国内老熟妇对白xxxxhd | 亚洲一区二区观看播放 | 久精品国产欧美亚洲色aⅴ大片 | 人妻aⅴ无码一区二区三区 | 国产在热线精品视频 | 自拍偷自拍亚洲精品被多人伦好爽 | 色五月丁香五月综合五月 | 亚洲 激情 小说 另类 欧美 | 性欧美疯狂xxxxbbbb | 成人女人看片免费视频放人 | 日本一本二本三区免费 | aⅴ亚洲 日韩 色 图网站 播放 | 国产亚洲精品久久久久久 | 熟女体下毛毛黑森林 | 色偷偷人人澡人人爽人人模 | 亚洲欧美国产精品专区久久 | 大色综合色综合网站 | 动漫av一区二区在线观看 | 国内少妇偷人精品视频免费 | 成人性做爰aaa片免费看不忠 | 97se亚洲精品一区 | 男女下面进入的视频免费午夜 | 久久精品女人的天堂av | 亚洲精品欧美二区三区中文字幕 | 国产成人久久精品流白浆 |