Rolling Guidance Filter
生活随笔
收集整理的這篇文章主要介紹了
Rolling Guidance Filter
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
?
?
Rolling Guidance Filter 非常有用處,為中國香港大學Qi Zhang,Xiaoyong Shen等所發明,其作用基本上可以認為是bilateral 的升級版。
Rolling Guidance Filter 在去移除和平滑圖像中的復雜的小區域時,還能保證大區域物體邊界的準確性。
因此,可以使用Rolling Guidance Filter 去除復雜背景,獲取物體輪廓,方便圖像分割。同時用其逆運算,可以增強圖像細節。
?
獲取圖像輪廓
?
Input
| ? | Canny of Input | Rolling Guidance Result | Canny of Rolling Guidance Result |
?
圖像增強
?
Input
| ? | Detail Enhanced by Bilateral Filter | Detail Enhanced by Rolling Guidance (Ours) |
?
OpenCV 3.1.0 已經將此算法集成進去,接口定義方法見下:
?
void cv::ximgproc::rollingGuidanceFilter
| ? | ( | InputArray? | src, |
| ? | ? | OutputArray? | dst, |
| ? | ? | int? | d = -1, |
| ? | ? | double? | sigmaColor = 25, |
| ? | ? | double? | sigmaSpace = 3, |
| ? | ? | int? | numOfIter = 4, |
| ? | ? | int? | borderType = BORDER_DEFAULT? |
| ? | ) | ? | ? |
Applies the rolling guidance filter to an image.
Parameters
| src | Source 8-bit or floating-point, 1-channel or 3-channel image. |
| dst | Destination image of the same size and type as src. |
| d | Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it is computed from sigmaSpace . |
| sigmaColor | Filter sigma in the color space. A larger value of the parameter means that farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in larger areas of semi-equal color. |
| sigmaSpace | Filter sigma in the coordinate space. A larger value of the parameter means that farther pixels will influence each other as long as their colors are close enough (see sigmaColor ). When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is proportional to sigmaSpace . |
| numOfIter | Number of iterations of joint edge-preserving filtering applied on the source image. |
| borderType | ? |
Note
rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
See also
jointBilateralFilter, bilateralFilter, amFilter
總結
以上是生活随笔為你收集整理的Rolling Guidance Filter的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: l1范数最小化快速算法【文献阅读】
- 下一篇: Non-Blind图像反卷积论文整理