埃拉托斯特尼筛法(埃筛)
生活随笔
收集整理的這篇文章主要介紹了
埃拉托斯特尼筛法(埃筛)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
埃篩的作用是找出區間內的所有素數,復雜度是O(nloglogn)。其基本思想是:素數的倍數一定是合數。
#include <bits/stdc++.h> using namespace std; const int Max = 1e5; int n; int prime[Max]; // 1表示是素數void eratos() {memset(prime, 1, sizeof(prime)); // 默認全是素數prime[0] = prime[1] = 0; // 0和1不是素數for (int i = 2; i * i <= n; i++) { // 當i*i>n時,i*j>n,內層循環一定不執行,白白浪費時間if (!prime[i]) continue;for (int j = i * 2; j <= n; j+=i) {prime[j] = 0; // 素數的倍數一定是合數}} }int main() {cin >> n;eratos();for (int i = 0; i <=n; i++) if (prime[i]) cout << i << endl;return 0; }注意外層循環的條件是 i * i <= n,當 i 更大時,內層循環一定不執行,等于是浪費時間。
該程序可以在1秒內找出1e6范圍以內的全部素數,了解即可,做題時應使用更高效的線性篩素數算法(歐拉篩法)。
總結
以上是生活随笔為你收集整理的埃拉托斯特尼筛法(埃筛)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 最大公约数+最小公倍数
- 下一篇: 【筛素数】P1579 哥德巴赫猜想(升级